如圖,二次函數(shù)y=-12x2-x+4的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)若點(diǎn)P在拋物線對(duì)稱軸上,且在x軸上方,當(dāng)△PBC為等腰三角形時(shí),求出所有符合條件的點(diǎn)P的坐標(biāo).
y
=
-
1
2
x
2
-
x
+
4
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)A(2,0)、B(-4,0)、C(0,4);
(2)(-1,1)或或.
(2)(-1,1)或
(
-
1
,
23
)
(
-
1
,
4
+
31
)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:482引用:2難度:0.2
相似題
-
1.如圖1,在平面直角坐標(biāo)系中,四邊形AOBC為矩形,BC=2
,∠BOC=60°,D為BC中點(diǎn).某反比例函數(shù)過(guò)點(diǎn)D,且與直線OC交于點(diǎn)E.3
(1)點(diǎn)E的坐標(biāo)為 .
(2)好奇的小明在探索一個(gè)新函數(shù).若點(diǎn)P為x軸上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線交直線OC于點(diǎn)Q,交該反比例函數(shù)圖象于點(diǎn)R.若y′=PQ+PR,點(diǎn)P橫坐標(biāo)為x.y′關(guān)于x的圖象如圖2.
①求y′與x之間的函數(shù)關(guān)系式.②寫(xiě)出該函數(shù)的兩條性質(zhì).
(3)已知1<x<4
①若關(guān)于x的方程x2-4x-m=0有解,求m的取值范圍.小明思考過(guò)程如下:
由x2-4x-m=0得m=x2-4x,m是關(guān)于x的二次函數(shù),根據(jù)x的范圍可以求出m的取值范圍,請(qǐng)你完成解題過(guò)程.
②若關(guān)于x的方程x2-mx+26=0有解,求直接寫(xiě)出m的取值范圍.6發(fā)布:2025/5/25 7:30:1組卷:476引用:3難度:0.1 -
2.如圖,拋物線y=ax2+bx+4經(jīng)過(guò)點(diǎn)E(-2,4),與x軸交于A、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)連接AC,過(guò)點(diǎn)E作x軸的垂線交線段AC于點(diǎn)M,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)且以AM為邊的四邊形是平行四邊形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/25 7:30:1組卷:203引用:1難度:0.3 -
3.如圖1,拋物線y=ax2+bx+c的圖象與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=OA.
(1)求拋物線解析式;
(2)點(diǎn)M是直線AC上方的拋物線上一動(dòng)點(diǎn),M點(diǎn)的橫坐標(biāo)為m,四邊形ABCM的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)如圖2,D(0,-2),連接BD,將△OBD繞平面內(nèi)的某點(diǎn)(記為P)逆時(shí)針旋轉(zhuǎn)180°得到△O′B′D′,O、B、D的對(duì)應(yīng)點(diǎn)分別為O′、B′、D′.若點(diǎn)B′、D′兩點(diǎn)恰好落在拋物線上,求旋轉(zhuǎn)中心點(diǎn)P的坐標(biāo).發(fā)布:2025/5/25 8:0:2組卷:570引用:5難度:0.2