已知函數(shù)f(x)=lnx+1x.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-ax2+x-ax2.證明:當(dāng)0<a<12時,?x∈(0,a1-a),g(x)>0恒成立.
1
x
a
x
2
+
x
-
a
x
2
1
2
(
0
,
a
1
-
a
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/28 8:0:9組卷:30引用:1難度:0.6
相似題
-
1.設(shè)f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實數(shù)a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:97引用:5難度:0.3 -
2.已知函數(shù)f(x)=2ex-sin2x.
(1)當(dāng)x≥0時,求函數(shù)f(x)的最小值;
(2)若對于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實數(shù)a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5 -
3.已知兩數(shù)f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
發(fā)布:2024/11/8 0:0:1組卷:134引用:3難度:0.6
相關(guān)試卷