觀察下列等式.
1×12=1-12,12×3=12-13,13×4=13-14,
將以上三個等式兩邊分別相加得:
11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)1n(n+1)=1n-1n+11n-1n+1;
(2)根據(jù)以上規(guī)律直接寫出下列各式的計算結(jié)果:
11×2+12×3+13×4+…+12014×2015=2014201520142015.
(3)探究并計算:
12×4+14×6+16×8+…+12012×2014.
1
×
1
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
1
×
2
+
1
2
×
3
+
1
3
×
4
=
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
1
-
1
4
=
3
4
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
2014
×
2015
2014
2015
2014
2015
1
2
×
4
1
4
×
6
1
6
×
8
1
2012
×
2014
【考點】規(guī)律型:數(shù)字的變化類.
【答案】-;
1
n
1
n
+
1
2014
2015
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 15:0:8組卷:114引用:3難度:0.5
相似題
-
1.觀察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定規(guī)律排列的一組數(shù):250、251、252、…、299、2100.若250=a,用含a的式子表示這組數(shù)的和是( )
發(fā)布:2025/6/5 23:0:2組卷:406引用:3難度:0.7 -
2.閱讀材料:求1+2+22+23+24+…+22013的值.
解:設(shè)S=1+2+22+23+…+22012+22013,將等式兩邊同時乘以2得:
2S=2+22+23+24+25+…+22013+22014
將下式減去上式得2S-S=22014-1
即S=22014-1
即1+2+22+23+24+…+22013=22014-1
請你仿照上述方法,計算 1+2-1+2-2+2-3+2-4+2-5+2-6=.發(fā)布:2025/6/6 1:0:1組卷:260引用:1難度:0.7 -
3.觀察以下等式:
第1個等式:(2×1+1)2=(2×2+1)2-(2×2)2,
第2個等式:(2×2+1)2=(3×4+1)2-(3×4)2,
第3個等式:(2×3+1)2=(4×6+1)2-(4×6)2,
第4個等式:(2×4+1)2=(5×8+1)2-(5×8)2,…,
按照以上規(guī)律.解決下列問題:
(1)寫出第6個等式:;
(2)寫出你猜想的第n個等式(用含n的式子表示),并通過計算說明其正確性.發(fā)布:2025/6/6 0:0:1組卷:121引用:1難度:0.5