如圖,直線y1=2x-2的圖象與y軸交于點A,直線y2=-2x+6的圖象與y軸交于點B,與x軸交于點D,兩者相交于點C.
(1)方程組2x-y=2 2x+y=6
的解是 x=2 y=2
x=2 y=2
;
(2)當y1>0與y2>0同時成立時,x的取值范圍為 1<x<31<x<3;
(3)在直線y1=2x-2的圖象上存在點P,使得△ABP的面積是△ABC的面積的2倍,求出點P的坐標;
(4)在x軸上求一點Q,使△QBD為等腰三角形,直接寫出所有滿足條件的點P的坐標.
2 x - y = 2 |
2 x + y = 6 |
x = 2 |
y = 2 |
x = 2 |
y = 2 |
【考點】一次函數綜合題.
【答案】
;1<x<3
x = 2 |
y = 2 |
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/16 18:0:1組卷:94難度:0.6
相似題
-
1.如圖,在平面直角坐標系xOy中,點A(0,8),點B(6,8).
(1)只用直尺(沒有刻度)和圓規(guī),求作一個點P,使點P同時滿足下列兩個條件(要求保留作圖痕跡,不必寫出作法):
①點P到A、B兩點的距離相等;
②點P到∠xOy的兩邊距離相等.
(2)在(1)作出點P后,直接寫出直線PA的解析式.發(fā)布:2025/6/24 17:0:1組卷:98引用:3難度:0.1 -
2.如圖,一次函數
的圖象分別與x軸、y軸交于點A、B,以線段AB為邊在第一象限內作等腰Rt△ABC,∠BAC=90°.求過B、C兩點直線的解析式.y=-23x+2發(fā)布:2025/6/24 15:30:2組卷:2570難度:0.5 -
3.如圖,在平面直角坐標系中,直線y=
x-23與矩形ABCO的邊OC、BC分別交于點E、F,已知OA=3,OC=4,則△CEF的面積是( ?。?/h2>23發(fā)布:2025/6/24 17:30:1組卷:2812引用:31難度:0.9