將一副三角板按如圖放置,有下列結(jié)論:①若∠2=30°,則AC∥DE;②∠BAE+∠CAD=180°;③若BC∥AD,則∠2=30°;④若∠CAD=150°,則∠4=∠C.其中正確的是( ?。?/h1>
【考點】平行線的判定與性質(zhì).
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/28 3:0:8組卷:465引用:3難度:0.5
相似題
-
1.完成證明并寫出推理根據(jù):
如圖,直線PQ分別與直線AB、CD交于點E和點F,∠1=∠2,射線EM、EN分別與直線CD交于點M、N,且EM⊥EW,則∠4與∠3有何數(shù)量關(guān)系?并說明理由.
解:∠4與∠3的數(shù)量關(guān)系為 ,理由如下:
∵∠1=∠2(已知),
∴∥( ),
∴∠4=∠( ),
∵EM⊥EN(已知),
∴∠MEN=90°( ),
∵∠BEM-∠3=∠,
∴∠4=∠3+.發(fā)布:2025/6/8 11:0:1組卷:30引用:1難度:0.5 -
2.如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠D=30°,求∠AED的度數(shù).發(fā)布:2025/6/8 11:30:1組卷:520引用:4難度:0.6 -
3.如圖1,已知AB∥CD,直線AB、CD把平面分成①、②、③三個區(qū)域(直線AB、CD不屬于①、②、③中任何一個區(qū)域).點P是直線AB、CD、AC外一點,聯(lián)結(jié)PA、PC,可得∠PAB、∠PCD、∠APC.
(1)如圖2,當點P位于第①區(qū)域一位置時,請?zhí)顚憽螦PC=∠PAB+∠PCD的理由.
解:過點P作PE∥AB,
因為AB∥CD,PE∥AB,
所以PE∥CD().
因為PE∥AB,
所以∠APE=∠PAB().
同理∠CPE=∠PCD.
因此∠APE+∠CPE=∠PAB+∠PCD.
即∠APC=∠PAB+∠PCD.
(2)在第(1)小題中改變點P的位置,如圖3所示,求∠APC+∠PAB+∠PCD等于多少度?為什么?
(3)當點P在第②區(qū)域時,∠PAB、∠PCD、∠APC有怎樣的數(shù)量關(guān)系?請畫出圖形,并直接寫出相應的結(jié)論.發(fā)布:2025/6/8 12:30:1組卷:107引用:3難度:0.6
相關(guān)試卷