試卷征集
加入會員
操作視頻

已知雙曲線
C
x
2
a
2
-
y
2
b
2
=
1
a
0
b
0
實軸端點分別為A1(-a,0),A2(a,0),右焦點為F,離心率為2,過A1點且斜率1的直線l與雙曲線C交于另一點B,已知△A1BF的面積為
9
2

(1)求雙曲線的方程;
(2)若過F的直線l'與雙曲線C交于M,N兩點,試探究直線A1M與直線A2N的交點Q是否在某條定直線上?若在,請求出該定直線方程;若不在,請說明理由.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:199引用:4難度:0.6
相似題
  • 1.已知雙曲線C
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    ,
    b
    0
    的右焦點為
    F
    7
    ,
    0
    ,漸近線方程為
    y
    3
    2
    x

    (1)求雙曲線C的方程.
    (2)已知雙曲線C的左、右頂點分別為A,B,直線y=kx+m與雙曲線C的左、右支分別交于點M,N(異于點A,B).設直線AM,BN的斜率分別為k1,k2,若點
    m
    ,
    3
    k
    在雙曲線C上,證明k1k2為定值,并求出該定值.

    發(fā)布:2024/10/23 2:0:1組卷:201引用:6難度:0.1
  • 2.已知雙曲線C的中心為坐標原點,右焦點為
    2
    5
    0
    ,離心率為
    5

    (1)求C的方程;
    (2)記C的左、右頂點分別為A1,A2,點P在定直線x=-1上運動,直線PA1與PA2雙曲線分別交于M,N兩點,證明:直線MN恒過定點.

    發(fā)布:2024/10/25 5:0:2組卷:88引用:1難度:0.2
  • 3.已知雙曲線
    x
    2
    4
    -
    y
    2
    2
    =
    1
    ,
    (1)過點M(1,1)的直線交雙曲線于A,B兩點,若M為弦AB的中點,求直線AB的方程;
    (2)是否存在直線l,使得
    1
    ,
    1
    2
    為l被該雙曲線所截弦的中點,若存在,求出直線l的方程,若不存在,請說明理由.

    發(fā)布:2024/10/23 3:0:1組卷:17引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正