如圖1,在平面直角坐標(biāo)系中,二次函數(shù)y=-427x2+12的圖象與y軸交于點A,與x軸交于B,C兩點(點B在點C的左側(cè)),連接AB,AC.

(1)點B的坐標(biāo)為 (-9,0)(-9,0),點C的坐標(biāo)為 (9,0)(9,0);
(2)過點C作射線CD∥AB,點M是線段AB上的動點,點P是線段AC上的動點,且始終滿足BM=AP(點M不與點A,點B重合),過點M作MN∥BC分別交AC于點Q,交射線CD于點N (點Q不與點P重合),連接PM,PN,設(shè)線段AP的長為n.
①如圖2,當(dāng)n<12AC時,求證:△PAM≌△NCP;
②直接用含n的代數(shù)式表示線段PQ的長;
③若PM的長為97,當(dāng)二次函數(shù)y=-427x2+12的圖象經(jīng)過平移同時過點P和點N時,請直接寫出此時的二次函數(shù)表達式.
4
27
1
2
97
4
27
【考點】二次函數(shù)綜合題.
【答案】(-9,0);(9,0)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:3099引用:50難度:0.1
相似題
-
1.在平面直角坐標(biāo)系xOy中,拋物線y=
x2+bx+c過點A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點為P(m,n)(m>0).
?。绻鸖△OBP=3,設(shè)直線x=k,在這條直線的右側(cè)原拋物線和新拋物線均呈上升趨勢,求k的取值范圍;
ⅱ.點P在原拋物線上,新拋物線交y軸于點Q,且∠BPQ=120°,求點P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
2.如圖1,拋物線y=ax2+3ax(a為常數(shù),a<0)與x軸交于O,A兩點,點B為拋物線的頂點,點D是線段OA上的一個動點,連接BD并延長與過O,A,B三點的⊙P相交于點C,過點C作⊙P的切線交x軸于點E.
(1)①求點A的坐標(biāo);②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當(dāng),∠CAE=∠OBE時,a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發(fā)布:2025/5/24 1:0:1組卷:575引用:1難度:0.3 -
3.如圖,直線
與x軸、y軸分別交于點B、A,拋物線y=-x2+bx+c經(jīng)過點B,與y軸交于點C(0,4).y=-12x+2
(1)求拋物線的函數(shù)表達式;
(2)點P是x軸上方拋物線上的動點,過點P作PD⊥x軸于點D,若以點P、D、B為頂點的三角形與△AOB相似,求點P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:358引用:2難度:0.3
相關(guān)試卷