如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=mx(m≠0)的圖象相交于A,B兩點,過點A作AD⊥x軸于點D,AO=5,OD:AD=3:4,B點的坐標為(-6,n)
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求△AOB的面積;
(3)P是y軸上一點,且△AOP是等腰三角形,請直接寫出所有符合條件的P點坐標.
m
x
【考點】反比例函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/10 18:0:1組卷:2885引用:19難度:0.3
相似題
-
1.如圖,直線y=kx+1與x軸、y軸分別交于A、B兩點,與雙曲線y=
(x>0)相交于點C,CD⊥x軸于點D,CD=2,tan∠CAD=mx.12
(1)求直線與雙曲線的解析式;
(2)若點P為雙曲線上點C右側的一點,且PH⊥x軸,當以點P,H,D為頂點的三角形與△AOB相似時,求點P的坐標.發(fā)布:2025/6/12 15:0:5組卷:401引用:2難度:0.1 -
2.如圖,直線y=
x與雙曲線y=32(k≠0)交于A,B兩點,點A的坐標為(m,-3),點C是雙曲線第一象限分支上的一點,連接BC并延長交x軸于點D,且BC=2CD.kx
(1)求k的值并直接寫出點B的坐標;
(2)點G是y軸上的動點,連接GB,GC,求GB+GC的最小值;
(3)P是x軸上的點,Q是平面內(nèi)一點,是否存在點P,Q,使得A,B,P,Q為頂點的四邊形是矩形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.發(fā)布:2025/6/12 13:30:2組卷:1804引用:4難度:0.2 -
3.如圖,一次函數(shù)y=mx+5的圖象與反比例函數(shù)y=
(k≠0)在第一象限的圖象交于A(1,n)和B(4,1)兩點,過點A作y軸的垂線,垂足為M,kx
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)請根據(jù)圖象直接寫出不等式>mx+5的解集;kx
(3)連接OB,求S△AOB;
(4)在y軸上求一點P,使PA+PB最?。?/h2>發(fā)布:2025/6/12 18:0:1組卷:209引用:2難度:0.5