試卷征集
加入會(huì)員
操作視頻

數(shù)學(xué)模型學(xué)習(xí)與應(yīng)用:
白日登山望峰火,黃昏飲馬傍交河.——《古從軍行》唐李欣
模型學(xué)習(xí):詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題,我們稱(chēng)之為“將軍飲馬”問(wèn)題.關(guān)鍵是利用軸對(duì)稱(chēng)變換,把直線同側(cè)兩點(diǎn)的折線問(wèn)題轉(zhuǎn)化為直線兩側(cè)的線段問(wèn)題,從而解決距離和最短的一類(lèi)問(wèn)題,“將軍飲馬”問(wèn)題的數(shù)學(xué)模型如圖1所示:在直線l上存在點(diǎn)P,使PA+PB的值最小.
作法:作A點(diǎn)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A',連接A'B,A'B與直線l的交點(diǎn)即為點(diǎn)P.此時(shí)PA+PB的值最?。?br />模型應(yīng)用:
(1)如圖2,已知△ABC為等邊三角形,高AH=8cm,P為AH上一動(dòng)點(diǎn),D為AB的中點(diǎn).
①當(dāng)PD+PB的最小值時(shí),在圖中確定點(diǎn)P的位置(要有必要的畫(huà)圖痕跡,不用寫(xiě)畫(huà)法).
②則PD+PB的最小值為
8
8
cm.
模型變式:
(2)如圖3所示,某地有塊三角形空地AOB,已知∠AOB=30°,P是△AOB內(nèi)一點(diǎn),連接PO后測(cè)得PO=10米,現(xiàn)當(dāng)?shù)卣谌切慰盏谹OB中修一個(gè)三角形花壇PQR,點(diǎn)Q,R分別是OA,OB邊上的任意一點(diǎn)(不與各邊頂點(diǎn)重合),求△PQR周長(zhǎng)的最小值.菁優(yōu)網(wǎng)

【考點(diǎn)】幾何變換綜合題
【答案】8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 1:0:1組卷:386引用:1難度:0.2
相似題
  • 菁優(yōu)網(wǎng)1.如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長(zhǎng)線上,且DE=DA.
    (1)求證:∠BAD=∠EDC;
    (2)點(diǎn)E關(guān)于直線BC的對(duì)稱(chēng)點(diǎn)為M,聯(lián)結(jié)DM,AM.
    ①根據(jù)題意將圖補(bǔ)全;
    ②在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,DA和AM有什么數(shù)量關(guān)系并證明.

    發(fā)布:2024/12/23 14:0:1組卷:256引用:2難度:0.2
  • 菁優(yōu)網(wǎng)2.如圖,點(diǎn)M為矩形ABCD的邊BC上一點(diǎn),將矩形ABCD沿AM折疊,使點(diǎn)B落在邊CD上的點(diǎn)E處,EB交AM于點(diǎn)F,在EA上取點(diǎn)G,使EG=EC.若GF=6,sin∠GFE=
    4
    5
    ,則AB=

    發(fā)布:2024/12/23 8:0:23組卷:408引用:2難度:0.1
  • 3.閱讀下列材料,完成相應(yīng)任務(wù).
    【探究三角形中邊與角之間的不等關(guān)系】
    學(xué)習(xí)了等腰三角形,我們知道在一個(gè)三角形中,等邊所對(duì)的角相等;反過(guò)來(lái),等角所對(duì)的邊也相等,那么,不相等的邊所對(duì)的角之間的大小關(guān)系怎樣呢?大邊所對(duì)的角也大嗎?下面是奮進(jìn)小組的證明過(guò)程.
    如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
    菁優(yōu)網(wǎng)
    證明:如圖2,將△ABC折疊,使邊AC落在AB上,點(diǎn)C落在AB上的點(diǎn)C'處,折痕AD交BC于點(diǎn)D.則∠AC'D=∠C.
    ∵∠AC'D=
    +∠BDC'(三角形外角的性質(zhì))
    ∴∠AC'D>∠B
    ∴∠C>∠B(等量代換)
    類(lèi)似地,應(yīng)用這種方法可以證明“在一個(gè)三角形中,大角對(duì)大邊,小角對(duì)小邊”的問(wèn)題.
    任務(wù)一:將上述證明空白部分補(bǔ)充完整;
    任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問(wèn)題,再用三角形外角的性質(zhì)或三邊關(guān)系進(jìn)而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是
    ;(填正確選項(xiàng)的代碼:?jiǎn)芜x)
    A.轉(zhuǎn)化思想
    B.方程思想
    C.?dāng)?shù)形結(jié)合思想
    任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說(shuō)法,正確的有
    (將正確的代碼填在橫線處:多選).
    ①在△ABC中,AB>BC,則∠A>∠B;
    ②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
    ③Rt△ABC中,∠B=90°,則最長(zhǎng)邊是AC;
    ④在△ABC中,∠A=55°,∠B=70°,則AB=BC.

    發(fā)布:2024/11/22 8:0:1組卷:185引用:2難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正