在平面直角坐標(biāo)系xOy中,已知橢圓C1:x2a2+y2b2=1(a>b>0)過點(2,1),離心率為22,其左右焦點分別為F1,F(xiàn)2.
(1)若點P與F1,F(xiàn)2的距離之比為13,求直線x-2y+3=0被點P所在的曲線C2截得的弦長;
(2)設(shè)A1,A2分別為橢圓C1的左、右頂點,Q為C1上異于A1,A2的任意一點,直線A1Q,A2Q分別與橢圓C1的右準(zhǔn)線交于點M,N,求證:以MN為直徑的圓經(jīng)過x軸上的定點.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
2
2
1
3
x
-
2
y
+
3
=
0
【考點】直線與圓錐曲線的綜合;橢圓的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/19 1:0:1組卷:43引用:2難度:0.5
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~