我們不妨約定:在平面直角坐標(biāo)系中,若某函數(shù)圖象上至少存在不同的兩點(diǎn)關(guān)于y軸對稱,則把該函數(shù)稱之為“T函數(shù)”,其圖象上關(guān)于y軸對稱的不同兩點(diǎn)叫做一對“T點(diǎn)”.根據(jù)該約定,完成下列各題.
(1)若點(diǎn)A(1,r)與點(diǎn)B(s,4)是關(guān)于x的“T函數(shù)”y=-4x(x<0) tx2(x≥0,t≠0,t是常數(shù))
的圖象上的一對“T點(diǎn)”,則r=44,s=-1-1,t=44(將正確答案填在相應(yīng)的橫線上);
(2)關(guān)于x的函數(shù)y=kx+p(k,p是常數(shù))是“T函數(shù)”嗎?如果是,指出它有多少對“T點(diǎn)”如果不是,請說明理由;
(3)若關(guān)于x的“T函數(shù)”y=ax2+bx+c(a>0,且a,b,c是常數(shù))經(jīng)過坐標(biāo)原點(diǎn)O,且與直線l:y=mx+n(m≠0,n>0,且m,n是常數(shù))交于M(x1,y1),N(x2,y2)兩點(diǎn),當(dāng)x1,x2滿足(1-x1)-1+x2=1時(shí),直線l是否總經(jīng)過某一定點(diǎn)?若經(jīng)過某一定點(diǎn),求出該定點(diǎn)的坐標(biāo);否則,請說明理由.
- 4 x ( x < 0 ) |
t x 2 ( x ≥ 0 , t ≠ 0 , t 是常數(shù) ) |
【考點(diǎn)】二次函數(shù)綜合題.
【答案】4;-1;4
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/3 10:30:2組卷:4131引用:5難度:0.1
相似題
-
1.在平面直角坐標(biāo)系xOy中,拋物線L:y=ax2-2ax-3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線y=ax+1與拋物線交于C,D兩點(diǎn)(點(diǎn)D在第一象限).
(1)如圖,當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),求拋物線的函數(shù)表達(dá)式;
(2)在(1)的條件下,連接BD,點(diǎn)E在拋物線上,若∠DAE=∠ADB,求出點(diǎn)E的坐標(biāo);
(3)將拋物線L向上平移1個(gè)單位得到拋物線L1,拋物線L1的頂點(diǎn)為P,直線y=ax+1與拋物線L1交于M,N兩點(diǎn),連接MP,NP,若∠MPN=90°,求a的值.發(fā)布:2025/6/4 9:0:1組卷:756引用:2難度:0.3 -
2.如圖1,拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A、B(點(diǎn)B在點(diǎn)A左側(cè)),與y軸相交于點(diǎn)C(0,3).已知點(diǎn)A坐標(biāo)為(1,0),△ABC面積為6.
(1)求拋物線的解析式;
(2)點(diǎn)P是直線BC上方拋物線上一動點(diǎn),過點(diǎn)P作直線BC的垂線,垂足為點(diǎn)E,過點(diǎn)P作PF∥y軸交BC于點(diǎn)F,求△PEF周長的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,將該拋物線向左平移2個(gè)單位長度得到新的拋物線y',平移后的拋物線與原拋物線相交于點(diǎn)D,點(diǎn)M為直線BC上的一點(diǎn),點(diǎn)N是平面坐標(biāo)系內(nèi)一點(diǎn),是否存在點(diǎn)M,N,使以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/4 17:30:2組卷:486引用:3難度:0.4 -
3.如圖,拋物線y=a(x+1)(x-3)交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸負(fù)半軸于C點(diǎn),已知S△ABC=6.
(1)求拋物線的解析式;
(2)在直線BC下方的拋物線上取一點(diǎn)P,連接AP交BC于E點(diǎn),當(dāng)tan∠AEC=4時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M、N均在拋物線上,設(shè)點(diǎn)M的橫坐標(biāo)為m,點(diǎn)N的橫坐標(biāo)為n,(0<n<m<3),連接MN,連接AM、AN分別與y軸交于點(diǎn)S、T,∠AMN=2∠BAM,請問3OS+ST是否為定值?若是,求出其值;若不是,說明理由.發(fā)布:2025/6/4 17:30:2組卷:236引用:1難度:0.1