已知點E和圖形G,Q為圖形G上一點,若存在點P,使得點E為線段PQ的中點(P,Q不重合),則稱點P為圖形G關(guān)于點E的雙倍點.如圖,在平面直角坐標系中,點A(-1,1),B(-2,-1),C(0,-1),D(1,1).
(1)若點E的坐標為(-3,0),則在P1(-4,0),P2(-5,2),P3(-6,1),P4(-7,-1)是四邊形ABCD關(guān)于點E的雙倍點的是 P3,P4P3,P4;
(2)點N的坐標為(-3,t),若在二四象限角平分線上存在四邊形ABCD關(guān)于點N的雙倍點,直接寫出t的取值范圍;
(3)點M為四邊形ABCD邊上的一個動點,平行于二、四象限角平分線的直線交x軸于點F(a,0),與y軸交于點H(0,b),若線段FH上的所有點均可成為四邊形ABCD關(guān)于M的雙倍點,直接寫出b的取值范圍.
【考點】一次函數(shù)綜合題.
【答案】P3,P4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:401引用:2難度:0.1
相似題
-
1.閱讀材料:
如圖1,點M為AB中點,點A,點B坐標分別為(x1,y1),(x2,y2).從平移角度分析,易得點A到點M的平移過程與點M到點B的平移過程相同.設(shè)點M坐標為(m,n),則:,由此,我們可以得到點M與點A,B坐標間的關(guān)系為:m-x1=x2-mn-y1=y2-n.m=x1+x22n=y1+y22
(1)結(jié)論應(yīng)用:若點A,點B坐標分別為(-2,1),(4,5),則AB中點M坐標為;
(2)方法遷移:如圖2,點M為AB三等分點(AM>BM),點A,點B坐標分別為(x1,y1),(x2,y2),請你模仿材料中的方法,求點M與點A,B坐標間的關(guān)系;
(3)理解運用:如圖3,線段AP與BC交于點P,點P恰好為BC中點,點M為AP的三等分點(AM>PM),點A,點B,點C坐標分別為(x1,y1),(x2,y2),(x3,y3)利用以上結(jié)論求出點M與點A,B,C坐標間的關(guān)系.發(fā)布:2024/12/23 16:0:2組卷:86引用:2難度:0.2 -
2.如圖,平面直角坐標系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直線
過A點,且與y軸交于D點.y=-12x+2
(1)求點A、點B的坐標;
(2)試說明:AD⊥BO;
(3)若點M是直線AD上的一個動點,在x軸上是否存在另一個點N,使以O(shè)、B、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.發(fā)布:2024/12/23 19:30:2組卷:1184引用:3難度:0.4 -
3.如圖1,已知直線y=2x+2與y軸,x軸分別交于A,B兩點,以B為直角頂點在第二象限作等腰Rt△ABC
(1)求點C的坐標,并求出直線AC的關(guān)系式;
(2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于點M,P(-,k)是線段BC上一點,在x軸上是否存在一點N,使△BPN面積等于△BCM面積的一半?若存在,請求出點N的坐標;若不存在,請說明理由.52發(fā)布:2024/12/23 17:30:9組卷:4493引用:6難度:0.3
把好題分享給你的好友吧~~