如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng).
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/27 14:30:2組卷:71引用:2難度:0.5
相似題
-
1.已知:如圖,⊙O與⊙P相交于A、B兩點(diǎn),點(diǎn)P在⊙O上,⊙O的弦AC切⊙P于點(diǎn)A,CP及其延長(zhǎng)線交⊙P于D、E,過(guò)點(diǎn)E作EF⊥CE交CB的延長(zhǎng)線于F.
(1)求證:BC是⊙P的切線;
(2)若CD=2,CB=,求EF的長(zhǎng);22
(3)求以BP、EF為根的一元二次方程.發(fā)布:2025/5/29 3:30:1組卷:107引用:3難度:0.1 -
2.已知:如圖,AB是⊙O的直徑,AD是弦,OC垂直AD于F交⊙O于E,連接DE、BE,且∠C=∠BED.
(1)求證:AC是⊙O的切線;
(2)若OA=10,AD=16,求AC的長(zhǎng).發(fā)布:2025/5/29 1:30:1組卷:772引用:42難度:0.1 -
3.如圖,以等腰△ABC的一腰AB為直徑的⊙O交BC于D,過(guò)D作DE⊥AC于E,可得結(jié)論:DE是⊙O的切線.問(wèn):
(1)若點(diǎn)O在AB上向點(diǎn)B移動(dòng),以O(shè)為圓心,OB長(zhǎng)為半徑的圓仍交BC于D,DE⊥AC的條件不變,那么上述結(jié)論是否成立?請(qǐng)說(shuō)明理由;
(2)如果AB=AC=5cm,sinA=,那么圓心O在AB的什么位置時(shí),⊙O與AC相切?35發(fā)布:2025/5/29 5:30:2組卷:103引用:6難度:0.1
相關(guān)試卷