試卷征集
加入會員
操作視頻

對任意一個四位正整數(shù)m,如果m的百位數(shù)字等于個位數(shù)字與十位數(shù)字之和,m的千位數(shù)字等于十位數(shù)字的2倍與個位數(shù)字之和,那么稱這個數(shù)m為“筋斗數(shù)”.例如:m=5321,滿足1+2=3,2×2+1=5,所以5321是“筋斗數(shù)”.例如:m=8523,滿足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗數(shù)”.
(1)判斷9633和2642是不是“筋斗數(shù)”,并說明理由;
(2)若m是“筋斗數(shù)”,且m與13的和能被11整除,求滿足條件的所有“筋斗數(shù)”m.

【考點】因式分解的應用
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:103引用:1難度:0.5
相似題
  • 1.我們常利用數(shù)形結合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個棱長為a的大正方體進行以下探索:
    菁優(yōu)網
    (1)在大正方體一角截去一個棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為

    (2)將圖1中的幾何體分割成三個長方體①、②、③,如圖2所示,因為BC=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為
    ,長方體③的體積為
    ;(結果不需要化簡)
    (3)將表示長方體①、②、③的體積的式子相加,并將得到的多項式分解因式,結果為

    (4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為

    (5)已知a-b=4,ab=2,求a3-b3的值.

    發(fā)布:2024/12/23 14:0:1組卷:276引用:3難度:0.4
  • 2.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:
    ;
    (2)錯誤的原因為:

    (3)本題正確的結論為:

    發(fā)布:2024/12/23 18:0:1組卷:2494引用:25難度:0.6
  • 3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:383引用:7難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正