如圖,直線l1:y=2x+6交x軸、y軸分別于點A、B,直線l2:y=kx+b與直線l交于點D,與x軸交于點C.已知C(3,0),D點的橫坐標(biāo)為-1.
(1)求直線l2的解析表達(dá)式.
(2)若E在線段AC上,四邊形BDEC的面積為14,求E點坐標(biāo).
(3)若點M、N分別為直線l1、l2上的動點,連結(jié)OM、ON、MN,當(dāng)△OMN是以O(shè)M為直角邊的等腰直角三角形時,請直接寫出所有點M的坐標(biāo),并把求其中一個點M的坐標(biāo)過程寫出來.
【考點】一次函數(shù)綜合題.
【答案】(1)直線l2的解析表達(dá)式為y=-x+3;
(2)E(-1,0);
(3)M的坐標(biāo)為(-3,0)或(-9,-12)或(-,)或(,9).
(2)E(-1,0);
(3)M的坐標(biāo)為(-3,0)或(-9,-12)或(-
9
4
3
2
3
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1502引用:4難度:0.1
相似題
-
1.如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸交于點B(-5,0),與y軸交于點A,直線
過點A,與x軸交于點C,點P是x軸上方一個動點.y=-43x+4
(1)求直線AB的函數(shù)表達(dá)式;
(2)若點P在線段AB上,且S△APC=S△AOB,求點P的坐標(biāo);
(3)當(dāng) S△PBC=S△ABC時,動點M從點B出發(fā),先運動到點P,再從點P運動到點C后停止運動.點M的運動速度始終為每秒1個單位長度,運動的總時間為t(秒),請直接寫出t的最小值.發(fā)布:2025/5/22 18:30:2組卷:670引用:1難度:0.3 -
2.如圖,直線AB:y=kx+3交y軸于點A,交x軸于點B,直線y=-x+k經(jīng)過點A與x軸交于點C.
(1)求直線AC的解析式;
(2)如圖2,直線CD交AB于點D(1,m),點M在線段CD上,連接BM交y軸于點H,設(shè)點M的橫坐標(biāo)為t,△BMC的面積為S,求S與t之間的函數(shù)關(guān)系式;(不要求寫出自變量t的取值范圍)
(3)如圖3,在(2)的條件下,線段BM繞點M逆時針旋轉(zhuǎn)90°得到線段ME,過點B作直線EC的垂線,垂足為F,連接MF交AC于點G,連接HG,當(dāng)△AHG是銳角三角形,時,求點E的坐標(biāo).GH=52發(fā)布:2025/5/22 11:0:1組卷:115引用:3難度:0.2 -
3.給出如下定義:對于線段PQ,以點P為中心,把點Q逆時針旋轉(zhuǎn)60°得到點R,點R叫做線段PQ關(guān)于點P的“完美點”.
例如等邊△ABC中,點C就是線段AB關(guān)于點A的“完美點”.
在平面直角坐標(biāo)系xOy中.
(1)已知點A(0,2),在A1(,1),A2(-3,1),A3(1,3),A4(1,-3)中,是線段OA關(guān)于點O的“完美點”;3
(2)直線y=x+4上存在線段BB′,若點B′恰好是線段BO關(guān)于點B的“完美點”,求線段BB′的長;
(3)若OC=4,OE=2,點D是線段OC關(guān)于點O的“完美點”,點F是線段EO關(guān)于點E的“完美點”.當(dāng)線段DF分別取得最大值和最小值時,直接寫出線段CE的長.發(fā)布:2025/5/22 15:30:1組卷:595引用:1難度:0.1