試卷征集
加入會員
操作視頻

橢圓
C
x
2
m
+
y
2
=
1
m
1
的左右焦點為F1,F(xiàn)2,經(jīng)過F1的直線與橢圓C相交于A,B,若△ABF2的周長為8,則橢圓C的焦距為(  )

【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:142引用:2難度:0.7
相似題
  • 1.已知橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左右焦點分別為F1,F(xiàn)2,直線l過點F1,且與橢圓交于A,B兩點,若△ABF2的周長為40,∠F1AF2=60°,△F1AF2的面積為
    64
    3
    3
    ,則橢圓的焦距為(  )

    發(fā)布:2024/10/9 5:0:1組卷:154引用:1難度:0.5
  • 2.如圖①,用一個平面去截圓錐得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學(xué)家Germinaldandelin(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面、截面相切,兩個球分別與截面相切于E、F,在截口曲線上任取一點A,過A作圓錐的母線,分別與兩個球相切于C、B,由球和圓的幾何性質(zhì),可以知道,AE=AC,AF=AB,于是AE+AF=AB+AC=BC.由B、C的產(chǎn)生方法可知,它們之間的距離BC是定值,由橢圓定義可知,截口曲線是以E、F為焦點的橢圓.

    如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源P,則球在桌面上的投影是橢圓,已知A1A2是橢圓的長軸,PA1垂直于桌面且與球相切,PA1=5,則橢圓的焦距為(  )

    發(fā)布:2024/9/11 5:0:9組卷:164引用:2難度:0.6
  • 3.橢圓9x2+25y2=225的焦距為( ?。?/h2>

    發(fā)布:2024/10/12 12:0:2組卷:119引用:2難度:0.8
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正