已知圓C過點A(2,0),B(0,22),且圓心C在直線y=0上,則圓C的方程為( ?。?/h1>
A
(
2
,
0
)
,
B
(
0
,
2
2
)
【考點】圓的標(biāo)準(zhǔn)方程.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:336引用:2難度:0.9
相似題
-
1.已知圓A的圓心在曲線y2=-18x上,圓A與y軸相切,又與另一圓(x+2)2+(y-3)2=1相外切,求圓A的方程.
發(fā)布:2024/12/29 10:30:1組卷:15引用:2難度:0.5 -
2.設(shè)圓C與雙曲線
的漸近線相切,且圓心是雙曲線的右焦點,則圓C的標(biāo)準(zhǔn)方程是.x29-y216=1發(fā)布:2024/12/29 10:0:1組卷:54引用:8難度:0.7 -
3.過點A(0,0),B(2,2)且圓心在直線y=2x-4上的圓的標(biāo)準(zhǔn)方程為( ?。?/h2>
發(fā)布:2024/12/6 9:0:1組卷:655引用:7難度:0.8
把好題分享給你的好友吧~~