試卷征集
加入會員
操作視頻
已知雙曲線C與橢圓
x
2
8
+
y
2
4
=
1
有相同的焦點(diǎn),實(shí)半軸長為
3

(1)求雙曲線C的方程;
(2)若直線
l
y
=
kx
+
2
與雙曲線C有兩個(gè)不同的交點(diǎn)A和B,且
OA
?
OB
2
(其中O為原點(diǎn)),求k的取值范圍.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/21 19:0:2組卷:81引用:15難度:0.5
相似題
  • 1.動(dòng)圓C與圓M:
    x
    +
    2
    2
    +
    y
    2
    =
    1
    2
    外切,與圓N:
    x
    -
    2
    2
    +
    y
    2
    =
    49
    2
    內(nèi)切.
    (1)求動(dòng)圓C的圓心C的的軌跡方程;
    (2)直線l:y=k(x-1)(k≥0)與C相交于A,B兩點(diǎn),過C上的點(diǎn)P作x軸的平行線交線段AB于點(diǎn)Q,直線OP的斜率為k′(O為坐標(biāo)原點(diǎn)),若|AP|?|BQ|=|BP|?|AQ|,判斷k?k′是否為定值?并說明理由.
    發(fā)布:2024/10/22 8:0:1組卷:108引用:2難度:0.4
  • 2.在平面直角坐標(biāo)系xOy中,已知點(diǎn)M(-2,0),N(1,0),若動(dòng)點(diǎn)P滿足
    |
    PM
    |
    |
    PN
    |
    =
    2

    (1)求動(dòng)點(diǎn)P的軌跡方程;
    (2)若直線l過點(diǎn)M,且點(diǎn)N到直線l的距離為1,求直線l的方程,并判斷直線l與動(dòng)點(diǎn)P的軌跡方程所表示的曲線C的位置關(guān)系.
    發(fā)布:2024/10/21 16:0:2組卷:42引用:3難度:0.5
  • 3.平面內(nèi),過點(diǎn)A(-2,0)和B(2,0)的兩條直線交于點(diǎn)P,且直線AP和直線BP的斜率之積為
    -
    1
    4

    (1)求點(diǎn)P的軌跡C的方程;
    (2)過點(diǎn)M(1,0)的直線l交P點(diǎn)的軌跡C于E、F兩點(diǎn),求|ME|?|MF|的取值范圍.
    發(fā)布:2024/10/21 9:0:2組卷:33引用:1難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正