如圖,拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且當(dāng)x=0和x=2時(shí),y的值相等,直線y=3x-7與這條拋物線交于兩點(diǎn),其中一點(diǎn)橫坐標(biāo)為4,另一點(diǎn)是這條拋物線的頂點(diǎn)M.
(1)求頂點(diǎn)M的坐標(biāo)并求出這條拋物線對(duì)應(yīng)的函數(shù)解析式.
(2)P為線段BM上一點(diǎn)(P不與點(diǎn)B,M重合),作PQ⊥x軸于點(diǎn)Q,連接PC,設(shè)OQ=t,四邊形PQAC的面積為S,求S與t的函數(shù)解析式,并直接寫(xiě)出t的取值范圍.
(3)在線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?若存在,直接寫(xiě)出點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)M的坐標(biāo)為(1,-4),拋物線的解析式為:y=x2-2x-3;
(2)S=-t2+t+(1<t<3);
(3)存在這樣的點(diǎn)N,使△NMC為等腰三角形,且點(diǎn)N的坐標(biāo)為(,-)或(1+,-4)或(2,-2).
(2)S=-t2+
9
2
3
2
(3)存在這樣的點(diǎn)N,使△NMC為等腰三角形,且點(diǎn)N的坐標(biāo)為(
7
5
16
5
10
5
2
10
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 9:0:1組卷:390引用:3難度:0.4
相似題
-
1.綜合與探究
如圖,拋物線y=x2-x-3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.直線l與拋物線交于A,D兩點(diǎn),與y軸交于點(diǎn)E,點(diǎn)D的坐標(biāo)為(4,-3).14
(1)請(qǐng)直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo)及直線l的函數(shù)表達(dá)式;
(2)若點(diǎn)P是拋物線上的點(diǎn),點(diǎn)P的橫坐標(biāo)為m(m≥0),過(guò)點(diǎn)P作PM⊥x軸,垂足為M.PM與直線l交于點(diǎn)N,當(dāng)點(diǎn)N是線段PM的三等分點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q是y軸上的點(diǎn),且∠ADQ=45°,求點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/20 15:30:2組卷:5038引用:7難度:0.4 -
2.已知拋物線
,頂點(diǎn)為A,且經(jīng)過(guò)點(diǎn)y=a(x-12)2-2,點(diǎn)B(-32,2).C(52,2)
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點(diǎn)M,y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過(guò)點(diǎn)Q作QN∥y軸,過(guò)點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN1,若點(diǎn)N1落在x軸上,請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo).發(fā)布:2025/6/20 16:0:1組卷:8039引用:12難度:0.2 -
3.如圖,直線y=-x+3與x軸、y軸分別交于B、C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B、C,與x軸另一交點(diǎn)為A,頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在x軸上找一點(diǎn)E,使EC+ED的值最小,求EC+ED的最小值;
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得∠APB=∠OCB?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/20 17:0:9組卷:897引用:10難度:0.3