設(shè)橢圓C:x2a2+y2b2=1(a>b>0),左右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為D,離心率為63,且DF1?DF2=-2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)E是x軸正半軸上的一點(diǎn),過(guò)點(diǎn)E任作直線l與C相交于A,B兩點(diǎn),如果1|EA|2+1|EB|2,是定值,試確定點(diǎn)E的位置,并求SΔDAE?SΔDBE的最大值.
x
2
a
2
y
2
b
2
6
3
D
F
1
?
D
F
2
1
|
EA
|
2
+
1
|
EB
|
2
【考點(diǎn)】橢圓與平面向量.
【答案】(Ⅰ)+=1.
(Ⅱ)E(),最大值為.
x
2
6
y
2
2
(Ⅱ)E(
3
,
0
9
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/21 8:0:1組卷:20引用:1難度:0.3
相似題
-
1.在直角坐標(biāo)系xOy中,已知橢圓
的右焦點(diǎn)為F(1,0),過(guò)點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),|AB|的最小值為C:x2a2+y2b2=1(a>b>0).2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若與A,B不共線的點(diǎn)P滿(mǎn)足,求△PAB面積的取值范圍.OP=λOA+(2-λ)OB發(fā)布:2024/12/29 13:30:1組卷:107引用:3難度:0.4 -
2.橢圓C:
+x2a2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1的直線l交橢圓C于A,B兩點(diǎn),若|F1F2|=|AF2|,y2b2=2AF1,則橢圓C的離心率為( ?。?/h2>F1B發(fā)布:2024/12/6 18:30:2組卷:767引用:6難度:0.6 -
3.已知橢圓
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,經(jīng)過(guò)F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3x2a2+y2b2+4IB+5IA=IF2,則該橢圓的離心率是( ?。?/h2>0發(fā)布:2024/11/28 2:30:1組卷:1246引用:13難度:0.5