在平面直角坐標(biāo)系中,矩形ABCO的邊OA在y軸的正半軸上,OC在x軸的負(fù)半軸上.
(1)若點A,C的坐標(biāo)分別為A(0,2),C(-23,0),
①如圖(1),求證∠AOB=60°;
②如圖(2),點P,Q分別在BO和OA上,BP=OQ,直接寫出AP+CQ的最小值;
(2)如圖(3),過BO中點H的直線交y軸于點N,NH⊥BO,菱形ODEF的邊OD在x軸的正半軸上,E,F(xiàn)在第一象限;M為BE的中點,F(xiàn)M⊥MN.求證:∠ODE=2∠BON.

3
【考點】四邊形綜合題.
【答案】(1)①見解析過程;
②AP+CQ的最小值為6;
(2)見解析過程.
②AP+CQ的最小值為6;
(2)見解析過程.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:339引用:2難度:0.2
相似題
-
1.如圖,矩形ABCD中,AB=4,AD=3,點E在折線BCD上運動,將AE繞點A順時針旋轉(zhuǎn)得到AF,旋轉(zhuǎn)角等于∠BAC,連接CF.
(1)當(dāng)點E在BC上時,作FM⊥AC,垂足為M,求證:AM=AB;
(2)當(dāng)AE=3時,求CF的長;2
(3)連接DF,點E從點B運動到點D的過程中,試探究DF的最小值.發(fā)布:2025/6/10 11:30:1組卷:3953引用:8難度:0.1 -
2.如圖,四邊形ABCD中,AB=AD=4,CB=CD=3,∠ABC=∠ADC=90°,點M、N是邊AB、AD上的動點,且∠MCN=
∠BCD,CM、CN與對角線BD分別交于點P、Q.12
(1)求sin∠MCN的值;
(2)當(dāng)DN=DC時,求∠CNM的度數(shù);
(3)試問:在點M、N的運動過程中,線段的比值是否發(fā)生變化?如不變,請求出這個值;如變化,請至少給出兩個可能的值,并說明點N相應(yīng)的位置.PQMN發(fā)布:2025/6/10 13:0:2組卷:1113引用:6難度:0.1 -
3.如圖,在矩形ABCD中,E是BC上一動點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G,AB=3,AD=4.
(1)如圖1,當(dāng)∠DAG=30°時,求BE的長;
(2)如圖2,當(dāng)點E是BC的中點時,求線段GC的長;
(3)如圖3,點E在運動過程中,當(dāng)△CFE的周長最小時,直接寫出BE的長.發(fā)布:2025/6/10 12:30:1組卷:1237引用:11難度:0.3