設(shè)滿足以下兩個(gè)條件的有窮數(shù)列a1,a2,?,an為n(n=2,3,4,?)階“期待數(shù)列”:
(1)a1+a2+a3+?+an=0;
(2)|a1|+|a2|+|a3|+?+|an|=1.
(Ⅰ)分別寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”(不必說明理由);
(Ⅱ)若等差數(shù)列{an}是15階“期待數(shù)列”,求{an}的通項(xiàng)公式;
(Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,?,n),證明:
(i)|Sk|≤12;
(ii)|n∑i=1aii|≤12-12n.
|
S
k
|
≤
1
2
|
n
∑
i
=
1
a
i
i
|
≤
1
2
-
1
2
n
【考點(diǎn)】裂項(xiàng)相消法;數(shù)列的應(yīng)用.
【答案】(Ⅰ)一個(gè)單調(diào)遞增的3階期待數(shù)列:,0,;一個(gè)單調(diào)遞增的4階期待數(shù)列:,,,;
(Ⅱ)當(dāng)d>0時(shí),;當(dāng)d<0時(shí),;
(Ⅲ)(i)證明見解析;(ii)證明見解析.
-
1
2
1
2
-
3
8
-
1
8
1
8
3
8
(Ⅱ)當(dāng)d>0時(shí),
a
n
=
n
-
8
56
a
n
=
8
-
n
56
(Ⅲ)(i)證明見解析;(ii)證明見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:59引用:1難度:0.3
相似題
-
1.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),記數(shù)列
的前n項(xiàng)和為Sn,則S1?S2?S3…?Sn=.{1log2an?log2an+1}發(fā)布:2024/12/29 4:0:1組卷:35引用:3難度:0.5 -
2.已知等差數(shù)列{an}的公差d>0,a2=7,且a1,a6,5a3成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足,且b1=1bn+1-1bn=an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.13發(fā)布:2024/12/29 0:0:2組卷:277引用:5難度:0.5 -
3.設(shè){an}是正項(xiàng)等差數(shù)列,a3=3,且a2,a5-1,a6+2成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)記{an}的前n項(xiàng)和為Sn,且,求數(shù)列{bn}的前n項(xiàng)和Tn.bn=1Sn發(fā)布:2024/12/29 2:30:1組卷:154引用:3難度:0.5