如圖,直線y=32x+3與x軸、y軸交于點A、C,拋物線y=-12x2+bx+c經(jīng)過點A、C,與x軸的另一個交點是B,點P是直線AC上的一動點.

(1)求拋物線的解析式和點B的坐標;
(2)如圖1,求當OP+PB的值最小時點P的坐標;
(3)如圖2,過點P作PB的垂線交y軸于點D,是否存在點P,使以P、D、B為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
y
=
3
2
x
+
3
y
=
-
1
2
x
2
+
bx
+
c
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+3,B(3,0);
(2)P(-,);
(3)點P的坐標為(-1,)或(-,)或(-,-).
1
2
1
2
(2)P(-
102
91
120
91
(3)點P的坐標為(-1,
3
2
18
13
12
13
18
5
12
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/24 3:0:1組卷:407引用:1難度:0.3
相似題
-
1.已知:在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx-3(a>0)的圖象與x軸交于A,B兩點,點A在點B的左側(cè),與y軸交于點C,且OC=OB=3OA.
(1)求這個二次函數(shù)的解析式;
(2)設點D是點C關(guān)于此拋物線對稱軸的對稱點,直線AD,BC交于點P,試判斷直線AD,BC是否垂直,并證明你的結(jié)論;
(3)在(2)的條件下,若點M,N分別是射線PC,PD上的點,問:是否存在這樣的點M,N的坐標,使得以點P,M,N為頂點的三角形與△ACP全等?若存在,請求出點M,N的坐標;若不存在,請說明理由.發(fā)布:2025/6/17 11:30:1組卷:129引用:1難度:0.4 -
2.如圖,直線y1=-x+3與x軸于交于點B,與y軸交于點C.拋物線y2=-x2+bx+c經(jīng)過B、C兩點,并與x軸另一個交點為A.
(1)求拋物線y2的解析式;
(2)若點M在拋物線上,且S△MOC=4S△AOC,求點M的坐標;
(3)設點P是線段BC上一動點,過P作PQ⊥x軸,交拋物線于點Q,求線段PQ長度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
(3)若點Q在x軸上,點G為該拋物線的頂點,且∠QGA=45°,求點Q的坐標.發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5