已知點M到點F(1,0)和直線x=-1的距離相等,記點M的軌跡為C.
(1)求軌跡C的方程;
(2)過點F作相互垂直的兩條直線l1、l2,曲線C與l1交于點P1、P2,與l2交于點Q1、Q2,試證明:1|P1P2|+1|Q1Q2|=14.
1
|
P
1
P
2
|
+
1
|
Q
1
Q
2
|
=
1
4
【考點】拋物線的標準方程.
【答案】(1)y2=4x.
(2)證明:設(shè)l1的方程為y=k(x-1),代入拋物線方程,整理可得k2x-(2k2+4)x+k2=0,
設(shè)P1、P2的橫坐標分別為x1、x2,則x1+x2=,
∴|P1P2|=x1+x2+p=,
以-代入,可得|Q1Q2|=4+4k2,
∴=.
(2)證明:設(shè)l1的方程為y=k(x-1),代入拋物線方程,整理可得k2x-(2k2+4)x+k2=0,
設(shè)P1、P2的橫坐標分別為x1、x2,則x1+x2=
2
k
2
+
4
k
2
∴|P1P2|=x1+x2+p=
4
k
2
+
4
k
2
以-
1
k
∴
1
|
P
1
P
2
|
+
1
|
Q
1
Q
2
|
1
4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:622引用:2難度:0.9
相似題
-
1.如圖是拋物線形拱橋,當水面在l時,拱頂離水面2米,水面寬4米,水位下降1米后,水面寬 米.
發(fā)布:2024/12/6 4:30:1組卷:452引用:22難度:0.7 -
2.中國古代橋梁的建筑藝術(shù),有不少是世界橋梁史上的創(chuàng)舉,充分顯示了中國勞動人民的非凡智慧.一個拋物線型拱橋,當水面離拱頂2m時,水面寬8m.若水面下降1m,則水面寬度為( )
發(fā)布:2024/11/26 14:30:1組卷:748引用:5難度:0.8 -
3.已知拋物線的焦點坐標是(-1,0),則拋物線的標準方程為( ?。?/h2>
發(fā)布:2024/12/17 13:30:2組卷:1160引用:5難度:0.8