已知橢圓C:x2a2+y2b2=1(a>b>0),離心率e=22,它的長軸長等于圓x2+y2-2x+4y-3=0的直徑.
(1)求橢圓C的方程;
(2)若過點P(0,-23)的直線l交橢圓C于A,B兩點,是否存在定點Q,使得以AB為直徑的圓經(jīng)過這個定點,若存在,求出定點Q的坐標(biāo);若不存在,請說明理由?
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
e
=
2
2
P
(
0
,-
2
3
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/5 8:0:8組卷:199引用:2難度:0.3
相似題
-
1.已知拋物線E:y2=2px(p>0)的焦點F恰為雙曲線C:
x2a2=1(a>0,b>0)的一頂點,C的另一頂點為A,C與E在第一象限內(nèi)的交點為P(4,m),若PF=5,則直線PA的斜率為( )-y2b2發(fā)布:2024/11/30 9:0:3組卷:169引用:2難度:0.7 -
2.兩千多年前,古希臘大數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn),用一個不垂直于圓錐的軸的平面截圓錐,其截口曲線是圓錐曲線(如圖).已知圓錐軸截面的頂角為2θ,一個不過圓錐頂點的平面與圓錐的軸的夾角為α.當(dāng)
時,截口曲線為橢圓;當(dāng)α=θ時,截口曲線為拋物線;當(dāng)0<α<θ時,截口曲線為雙曲線.在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P在平面ABCD內(nèi),下列說法正確的是( )θ<α<π2發(fā)布:2024/12/11 15:30:1組卷:507引用:3難度:0.3 -
3.與橢圓
有相同焦點,且滿足短半軸長為x29+y24=1的橢圓方程是( ?。?/h2>25發(fā)布:2024/12/11 3:30:1組卷:391引用:6難度:0.7
把好題分享給你的好友吧~~