試卷征集
加入會員
操作視頻

我們來研究一些特殊的求和類型問題.
類型一:形如1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結論是:1+2+3+…+n=
1
2
n(n+1),其中n是正整數(shù);
類型二:.1×2+2×3+…n(n+1)=?對于這個問題,我們觀察下面三個特殊的等式
1×2=
1
3
(1×2×3-0×1×2);2×3=
1
3
(2×3×4-1×2×3);3×4=
1
3
(3×4×5-2×3×4).
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=
1
3
×3×4×5=20
讀完這段材料,請你思考后回答:
(1)類比:1×2+2×3+…+10×11=
440
440

(2)歸納:1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)

(3)猜想:由上面兩種類型的求和結果試寫出
1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4
n(n+1)(n+2)(n+3)
1
4
n(n+1)(n+2)(n+3)

【答案】440;
1
3
n(n+1)(n+2);
1
4
n(n+1)(n+2)(n+3)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/23 6:0:1組卷:126引用:2難度:0.5
相似題
  • 1.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
    (1)1,-2,1,-2,1,-2,
    ,
    ,
    ,…
    (2)-2,4,-6,8,-10,
    ,…
    (3)1,0,-1,1,0,-1,
    ,

    發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3
  • 2.在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設:S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
    (1)求1+3+32+33+34+35+36的值;
    (2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.

    發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3
  • 3.(1)計算:1-2+3-4+5-6…+99-100;
    (2)計算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.

    發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正