試卷征集
加入會(huì)員
操作視頻

小明學(xué)習(xí)了垂徑定理后,做了下面的探究,請根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多新的發(fā)現(xiàn).如圖1,在⊙O中,C是
?
AB
的中點(diǎn),直線CD⊥AB于點(diǎn)E,則可以得到AE=BE,請證明此結(jié)論.

(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,稱為該圓的一條折弦.如圖2,古希臘數(shù)學(xué)家阿基米德發(fā)現(xiàn),若PA、PB是⊙O的折弦,C是
?
AB
的中點(diǎn),CD⊥PA于點(diǎn)E.則AE=PE+PB.這就是著名的“阿基米德折弦定理”.那么如何來證明這個(gè)結(jié)論呢?小明的證明思路是:在AE上截取AF=PB,連接CA、CF、PC、BC…請你按照小明的思路完成證明過程.
(3)如圖3,已知等邊三角形ABC內(nèi)接于⊙O,AB=2,點(diǎn)D是
?
AC
上的一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長為
2
2
+2
2
2
+2

【考點(diǎn)】圓的綜合題
【答案】2
2
+2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/16 13:0:2組卷:262引用:2難度:0.3
相似題
  • 1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
    (1)求證:BE是圓O的切線;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
    (3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.

    發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1
  • 2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
    (1)求證:直線CE是圓O的切線.
    (2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
    (3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長.

    發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
  • 3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
    (1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
    (2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.

    發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正