已知函數(shù)f(x)=lnx+ax+1-a2,其中a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)f(x)的零點的個數(shù).
f
(
x
)
=
lnx
+
a
x
+
1
-
a
2
【答案】(1)當(dāng)a≤4時,函數(shù)f(x)的增區(qū)間為(0,+∞),沒有減區(qū)間;
當(dāng)a>4時,函數(shù)f (x)的增區(qū)間為(0,),(,+∞),減區(qū)間為(,);
(2)當(dāng)a≤4時,函數(shù)f(x)有且僅有一個零點;當(dāng)a>4時,函數(shù)f(x)有且僅有3個零點.
當(dāng)a>4時,函數(shù)f (x)的增區(qū)間為(0,
a
-
2
-
a
2
-
4
a
2
a
-
2
+
a
2
-
4
a
2
a
-
2
-
a
2
-
4
a
2
a
-
2
+
a
2
-
4
a
2
(2)當(dāng)a≤4時,函數(shù)f(x)有且僅有一個零點;當(dāng)a>4時,函數(shù)f(x)有且僅有3個零點.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:79引用:1難度:0.4
相似題
-
1.已知函數(shù)
,則f(x)的單調(diào)遞減區(qū)間為( ?。?/h2>f(x)=xlnx+3發(fā)布:2025/1/7 12:30:6組卷:116引用:2難度:0.9 -
2.已知函數(shù)
.f(x)=12x2-a2+1ax+lnx
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)討論函數(shù)f(x)的單調(diào)性.發(fā)布:2024/12/29 9:30:1組卷:130引用:5難度:0.5 -
3.已知函數(shù)
.f(x)=lnxx-x
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)0<t<1,求f(x)在區(qū)間上的最小值.[t,1t]發(fā)布:2024/12/29 12:0:2組卷:88引用:2難度:0.5