已知F1(-c,0),F(xiàn)2(c,0)分別是橢圓M:x2a2+y2b2=1(a>b>0)的左、右焦點,且|F1F2|=23,離心率e=32
(Ⅰ)求橢圓的標(biāo)準方程;
(Ⅱ)過橢圓右焦點F2作直線l交橢圓M于A,B兩點
(1)當(dāng)直線l的斜率為1時,求△AF1B的面積S
(2)橢圓上是否存在點P,使得以O(shè)A、OB為鄰邊的四邊形OAPB為平行四邊形(O為坐標(biāo)原點)?若存在,求出所有的點P的坐標(biāo)與直線l的方程;若不存在,請說明理由.
x
2
a
2
y
2
b
2
3
3
2
【考點】橢圓的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:84引用:5難度:0.3
相似題
-
1.已知M是橢圓C:
=1上的一點,則點M到兩焦點的距離之和是( ?。?/h2>x29+y25發(fā)布:2024/12/22 15:30:10組卷:597引用:8難度:0.8 -
2.橢圓2x2+y2=1的( ?。?/h2>
發(fā)布:2024/12/20 12:0:3組卷:69引用:1難度:0.7 -
3.19世紀法國著名數(shù)學(xué)家加斯帕爾?蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,橢圓
(a>b>0)的蒙日圓方程為x2+y2=a2+b2.若圓(x-3)2+(y-b)2=9與橢圓x2a2+y2b2=1+y2=1的蒙日圓有且僅有一個公共點,則b的值為( ?。?/h2>x23發(fā)布:2024/12/20 2:30:1組卷:295引用:7難度:0.6
把好題分享給你的好友吧~~