閱讀下列材料,并完成相應(yīng)任務(wù):
幾何是數(shù)學(xué)的一個分支,幾何中有個對自然美體現(xiàn)非常完美的數(shù)值,叫黃金分割點.黃金分割被廣泛應(yīng)用于建筑等領(lǐng)域.黃金分割指把一條線段分為兩部分,使其中較長部分與線段總長之比等于較短部分與較長部分之比,該比值為5-12,用下面的方法(如圖①)就可以作出已知線段AB的黃金分割點H:
①以線段AB為邊作正方形ABCD,
②取AD的中點E,連接EB,
③延長DA到F,使EF=EB,
④以線段AF為邊作正方形AFGH,點H就是線段AB的黃金分割點.
以下是證明點H就是線段AB的黃金分割點的部分過程:
證明:設(shè)正方形ABCD的邊長為1,則AB=AD=1,
∵E為AD中點,∴AE=12,
∴在Rt△BAE中,BE=AB2+AE2=12+(12)2=52,
∴EF=BE=52,
∴AF=EF-AE=5-12,…
問題:
(1)補全題中的證明過程;
(2)如圖②,點C為線段AB的黃金分割點(AC>BC),分別以AC、BC為邊在線段AB同側(cè)作正方形ACDE和矩形CBFD,連接BD、BE.求證:△EAB∽△BCD;
(3)如圖③,在正五邊形ABCDE中,對角線AD、AC與EB分別交于點M、N,其中就包含有多個黃金分割點.如果AE=1,則AM的長度為 -1+52-1+52,AD的長度為 1+521+52.

5
-
1
2
AE
=
1
2
BE
=
A
B
2
+
A
E
2
=
1
2
+
(
1
2
)
2
=
5
2
EF
=
BE
=
5
2
AF
=
EF
-
AE
=
5
-
1
2
-
1
+
5
2
-
1
+
5
2
1
+
5
2
1
+
5
2
【考點】相似形綜合題.
【答案】;
-
1
+
5
2
1
+
5
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/31 15:30:1組卷:156引用:1難度:0.1
相似題
-
1.如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.
①當(dāng)t為何值時,DP⊥AC?
②設(shè)S△APQ+S△DCQ=y,寫出y與t之間的函數(shù)解析式,并探究P點運動到第幾秒到第幾秒之間時,y取得最小值.發(fā)布:2025/7/1 13:0:6組卷:2101引用:6難度:0.1 -
2.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結(jié)論:①
=AGAB;②若點D是AB的中點,則AF=AFFCAB;③當(dāng)B、C、F、D四點在同一個圓上時,DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結(jié)論序號是( ?。?/h2>12發(fā)布:2025/6/24 16:30:1組卷:2783引用:11難度:0.2 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當(dāng)點E是BC的中點時,有AE=EF成立;
【數(shù)學(xué)思考】某數(shù)學(xué)興趣小組在探究AE、EF的關(guān)系時,運用“從特殊到一般”的數(shù)學(xué)思想,通過驗證得出如下結(jié)論:
當(dāng)點E是直線BC上(B,C除外)任意一點時(其它條件不變),結(jié)論AE=EF仍然成立.
假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應(yīng)用】當(dāng)點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結(jié)論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1873引用:6難度:0.1