閱讀下列兩則材料,回答問題,
材料一:定義直線y=ax+b與直線y=bx+a互為“互助直線”,例如,直線y=x+4與直線y=4x+1互為“互助直線”;
材料二:對于平面直角坐標系中的任意兩點P1(x1,y1)、P2(x2,y2),P1、P2兩點間的直角距離d(P1,
P2)=|x1-x2|+|y1-y2|.如:Q1(-3,1)、Q2(2,4)兩點間的直角距離為d(Q1,Q2)=|-3-2|+|1-4|=8;
材料三:設P0(x0,y0)為一個定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.
(1)計算S(-1,6),T(-2,3)兩點間的直角距離d(S,T)=44;
(2)直線y=-2x+3上的一點H(a,b)又是它的“互助直線”上的點,求點H的坐標.
(3)對于直線y=ax+b上的任意一點M(m,n),都有點N(3m,2m-3n)在它的“互助直線”上,試求點L(5,-1)到直線y=ax+b的直角距離.
【考點】一次函數(shù)綜合題.
【答案】4
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:736引用:2難度:0.3
相似題
-
1.如圖,在平面直角坐標系xOy中,已知直線AC的解析式為y=-
x+1,直線AC交x軸于點C,交y軸于點A.14
(1)若等邊△OBD的頂點D與點C重合,另一頂點B在第一象限內,直接寫出點B的坐標;
(2)過點B作x軸的垂線l,在l上是否存在一點P,使得△AOP的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)試在直線AC上求出到兩坐標軸距離相等的所有點的坐標.發(fā)布:2025/6/9 10:30:1組卷:128引用:3難度:0.3 -
2.如圖,四邊形ABCD為矩形,A(0,0),B(4,0),D(0,8),將矩形ABCD沿直線DB折疊,使點A落在點A′處.
(1)求證DE=BE;
(2)求直線DE的函數(shù)表達式;
(3)在y軸上作點F(0,2),連接EF,點N是x軸上一動點,直線DE上是否存在點M,使以M,N,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,直接寫出M點坐標;若不存在,說明理由.發(fā)布:2025/6/9 17:0:1組卷:296引用:2難度:0.3 -
3.如圖所示,把矩形紙片OABC放入直角坐標系xOy中,使OA、OC分別落在x、y軸的正半軸上,連接AC,且AC=4
,5OCOA=12
(1)求AC所在直線的解析式;
(2)將紙片OABC折疊,使點A與點C重合(折痕為EF),求折疊后紙片重疊部分的面積.
(3)求EF所在的直線的函數(shù)解析式.發(fā)布:2025/6/8 23:30:1組卷:7293引用:9難度:0.1