試卷征集
加入會(huì)員
操作視頻

閱讀下列材料,回答問(wèn)題:
材料一:我們定義一種新運(yùn)算:我們把形如
a
b
c
d
這樣的式子叫作“行列式”,行列式的運(yùn)算方式是:
a
b
c
d
=
ad
-
bc
.例如:
2
3
5
6
=
2
×
6
-
3
×
5
=
12
-
15
=
-
3
;
x
3
x
4
=
4
x
-
3
x
=
x

材料二:在探究(x-y)3=?的時(shí)候,我們不妨利用多項(xiàng)式和多項(xiàng)式的乘法將其打開(kāi):(x-y)3=(x-y)(x-y)(x-y)=(x2-2xy+y2)(x-y)=x3-3x2y+3xy2-y3,我們把這個(gè)公式叫作“差的完全立方公式”.按同樣的方法我得出“和的完全立方公式”為:(x+y)3=x3+3x2y+3xy2+y3.這兩個(gè)公式常運(yùn)用在因式分解和簡(jiǎn)便運(yùn)算等過(guò)程中.
(1)計(jì)算:
5
4
8
9
=
13
13
;a3-3a2+3a-1=
(a-1)3
(a-1)3

(2)已知x+y=3,xy=1,求x3+y3的值.
(3)已知m=x-1,n=x+2,mn=5,求
m
3
m
2
+
n
2
n
m
2
+
3
n
2
+
m
+
n
-
2
n
n
m
-
n
的值.

【答案】13;(a-1)3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:294引用:1難度:0.5
相似題
  • 1.閱讀下列材料,并解決問(wèn)題.
    材料:兩個(gè)正整數(shù)相除時(shí),不一定都能整除,當(dāng)不能整除時(shí),就出現(xiàn)了余數(shù).被除數(shù)、除數(shù)、商和余數(shù)之間有如下的關(guān)系:被除數(shù)=除數(shù)×商+余數(shù)(0≤余數(shù)<除數(shù)).類似的,關(guān)于x的多項(xiàng)式A(x)除以多項(xiàng)式B(x)時(shí),一定存在一對(duì)多項(xiàng)式g(x)、r(x),使得A(x)=B(x)?g(x)+r(x),其中余式r(x)的次數(shù)小于除式B(x)的次數(shù).
    例如:多項(xiàng)式x2+x+5除以多項(xiàng)式x+2,商為x-1,余式數(shù)為7,即有x2+x+5=(x+2)(x-1)+7.
    又如:多項(xiàng)式x2+5x+6除以多項(xiàng)式x+2,商為x+3,余式數(shù)為0,即有x2+5x+6=(x+2)(x+3),此時(shí),多項(xiàng)式x2+5x+6能被多項(xiàng)式x+2整除.
    問(wèn)題:
    (1)多項(xiàng)式x2+2x-8除以多項(xiàng)式x-2,所得的商為

    (2)多項(xiàng)式x2+7x+8除以多項(xiàng)式x+1,所得的余式數(shù)為2,則商為

    (3)多項(xiàng)式2x3+ax2+bx-6分別能被x-1和x-2整除,則多項(xiàng)式2x3+ax2+bx-6除以(x-1)(x-2)的商為

    發(fā)布:2024/11/9 8:0:6組卷:316引用:1難度:0.5
  • 2.當(dāng)一個(gè)多位數(shù)的位數(shù)為偶數(shù)時(shí),在其中間位插入一位數(shù)k,(0≤k≤9,且k為整數(shù))得到一個(gè)新數(shù),我們把這個(gè)新數(shù)稱為原數(shù)的關(guān)聯(lián)數(shù).如:在435729中間插入數(shù)字6可得435729的一個(gè)關(guān)聯(lián)數(shù)4356729;在435729中間插入數(shù)字7可得435729的另一個(gè)關(guān)聯(lián)數(shù)4357729.
    請(qǐng)閱讀以上材料,解決下列問(wèn)題:
    (1)若一個(gè)兩位數(shù)M的關(guān)聯(lián)數(shù)是原數(shù)的9倍,求滿足條件的M的關(guān)聯(lián)數(shù);
    (2)對(duì)于一個(gè)六位數(shù)N=
    xyzxyz
    (1≤x≤5,0≤y≤9,0≤z≤7且x、y、z為整數(shù)),在N的中間位插入一位數(shù)(z+2),得其關(guān)聯(lián)數(shù),已知N為21的倍數(shù),且N的關(guān)聯(lián)數(shù)與N之差為9的倍數(shù),求證:x+y+1能被3整除.

    發(fā)布:2024/11/11 8:0:1組卷:678引用:1難度:0.2
  • 3.人們把
    5
    -
    1
    2
    這個(gè)數(shù)叫做黃金分割數(shù),著名數(shù)學(xué)家華羅庚優(yōu)選法中的0.618法就應(yīng)用了黃金分剖數(shù).設(shè)a=
    5
    -
    1
    2
    ?
    5
    +
    1
    2
    ,得ab=1,記S1=
    1
    1
    +
    a
    +
    1
    1
    +
    b
    ,S2=
    1
    1
    +
    a
    2
    +
    1
    1
    +
    b
    2
    ,…,S10=
    1
    1
    +
    a
    10
    +
    1
    1
    +
    b
    10
    ,則S1+S2+…+S10=

    發(fā)布:2024/11/11 8:0:1組卷:69引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正