在平面直角坐標系xOy中,曲線C1的參數(shù)方程為x=4t2-1 y=4t
(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為θ=π6(ρ∈R).
(Ⅰ)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(Ⅱ)設(shè)曲線C1與曲線C2交于兩點A,B,求1|OA|+1|OB|的值.
x = 4 t 2 - 1 |
y = 4 t |
θ
=
π
6
(
ρ
∈
R
)
1
|
OA
|
+
1
|
OB
|
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:202引用:4難度:0.7
相似題
-
1.在平面直角坐標系xOy中,已知曲線C1:
(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)設(shè)射線與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
3.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C的極坐標方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為
(t為參數(shù)).x=1-2ty=2+2t
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設(shè)點Q(1,2),直線l與曲線C交于A,B兩點,求|QA|?|QB|的值.發(fā)布:2024/12/29 5:30:3組卷:350引用:9難度:0.3
把好題分享給你的好友吧~~