在平面直角坐標(biāo)系xOy中,已知曲線C1:x=t, y=2t2-t+32
(t為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ=2acosθ(a>0).
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)射線θ=π3(ρ≥0)與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.
x = t , |
y = 2 t 2 - t + 3 2 |
θ
=
π
3
(
ρ
≥
0
)
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7
相似題
-
1.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負(fù)半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
2.已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合,若曲線C的極坐標(biāo)方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為
(t為參數(shù)).x=1-2ty=2+2t
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)點Q(1,2),直線l與曲線C交于A,B兩點,求|QA|?|QB|的值.發(fā)布:2024/12/29 5:30:3組卷:350引用:9難度:0.3 -
3.已知三個方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7
把好題分享給你的好友吧~~