如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=12AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=a2a2;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=15cm15cm.
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=3:13:1.
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.
BD
=
CD
=
1
2
AB
a
2
a
2
【答案】;15cm;3:1
a
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/11 7:0:2組卷:1284引用:13難度:0.5
相似題
-
1.圖1所示的是某超市入口的雙翼閘門,如圖2,當(dāng)它的雙翼展開時,雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°,求當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度.
發(fā)布:2025/6/9 1:0:1組卷:1089引用:7難度:0.5 -
2.如圖,在△ABC中,AB=AC,∠B=30°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)E,連接AD.
(1)求∠CAD的度數(shù);
(2)若BD=5,求CD的長.發(fā)布:2025/6/9 1:0:1組卷:31引用:1難度:0.7 -
3.如圖,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm,則BC=( ?。ヽm.
發(fā)布:2025/6/9 5:30:2組卷:259引用:6難度:0.7