阿波羅尼斯(公元前262年~公元前190年),古希臘人,與阿基米德、歐幾里得一起被譽(yù)為古希臘三大數(shù)學(xué)家.阿波羅尼斯研究了眾多平面軌跡問題,其中阿波羅尼斯圓是他的論著中的一個(gè)著名問題:已知平面上兩點(diǎn)A,B,則所有滿足
(λ>0,且λ≠1)的點(diǎn)P的軌跡是一個(gè)圓.已知平面內(nèi)的兩個(gè)相異定點(diǎn)P(1,0),Q(-1,0),動(dòng)點(diǎn)M滿足
,記M的軌跡為C,則軌跡C圍成圖形的面積是( ?。?/div>
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 3:0:2組卷:20引用:1難度:0.6