如圖,C為圓周上一點,BD是⊙O的切線,B為切點.

(1)在圖(1)中,AB是⊙O的直徑,∠BAC=30°,則∠DBC的度數(shù)為30°30°.
(2)在圖(2)中,∠BA1C=40°,求∠DBC的度數(shù).
(3)在圖(3)中,∠BA1C=α,求∠DBC的大小.
(4)通過(1)、(2)、(3)的探究,你發(fā)現(xiàn)的結論是弦切角等于它夾的弧所對的圓周角弦切角等于它夾的弧所對的圓周角
(5)如圖(4),AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為3333.
(6)如圖(5),C是⊙O的直徑AB延長線上的一點,CD切⊙O于D,∠ACD的平分線分別交AD、BD于E、F,試猜想∠DEF的度數(shù)并說明理由.
3
3
【考點】圓的綜合題.
【答案】30°;弦切角等于它夾的弧所對的圓周角;3
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/23 22:0:2組卷:106引用:1難度:0.3
相似題
-
1.如圖1,以點O為圓心,半徑為4的圓交x軸于A,B兩點,交y軸于C,D兩點,點P為劣弧AC上的一動點,延長CP交x軸于點E;連接PB,交OC于點F.
(1)若點F為OC的中點,求PB的長;
(2)求CP?CE的值;
(3)如圖2,過點O作OH∥AP交PD于點H,當點P在弧AC上運動時,連接AC,PC.試問△APC與△OHD相似嗎?說明理由;的值是否保持不變?若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.APDH發(fā)布:2025/6/24 18:30:1組卷:272引用:1難度:0.5 -
2.如圖,已知⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標是(1,-1),半徑為
.5
(1)比較線段AB與CD的大??;
(2)求A、B、C、D四點的坐標;
(3)過點D作⊙O′的切線,試求這條切線的解析式.發(fā)布:2025/6/24 20:0:2組卷:43引用:1難度:0.5 -
3.下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:
(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經過點B,畫出另一條直角邊所在的直線AD.則直線AD就是過點A的圓的切線.
請回答:①這種畫法是否正確 (是或否);
②你判斷的依據(jù)是:.發(fā)布:2025/6/25 8:0:1組卷:19引用:1難度:0.4