當(dāng)前位置:
2021-2022學(xué)年江蘇省鹽城市東臺(tái)實(shí)驗(yàn)初中集團(tuán)八年級(jí)(上)月考數(shù)學(xué)試卷(12月份)>
試題詳情
如圖,將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x
(1)小明發(fā)明了求正方形邊長(zhǎng)的方法:
由題意可得BD=BE=a-x,AD=AF=b-x
因?yàn)锳B=BD+AD,所以a-x+b-x=c,解得x=a+b-c2
(2)小亮也發(fā)現(xiàn)了另一種求正方形邊長(zhǎng)的方法:
利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x與a、b、c的關(guān)系,請(qǐng)根據(jù)小亮的思路完成他的求解過程:
(3)請(qǐng)結(jié)合小明和小亮得到的結(jié)論驗(yàn)證勾股定理.
a
+
b
-
c
2
【考點(diǎn)】勾股定理的證明.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2496引用:15難度:0.7
相似題
-
1.如圖是“趙爽弦圖”,△ABH、△BCG、△CDF和△DAE是四個(gè)全等的直角三角形,四邊形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.
發(fā)布:2025/6/23 0:0:1組卷:9094引用:71難度:0.7 -
2.歷史上對(duì)勾股定理的一種證法采用了下列圖形:其中兩個(gè)全等的直角三角形邊AE、EB在一條直線上.證明中用到的面積相等關(guān)系是( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:1043引用:15難度:0.7 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:8219引用:68難度:0.7