如圖,正方形ABCD中,DE是過點(diǎn)D的一條直線,點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)為C′,連接AC′并延長(zhǎng)交直線DE于點(diǎn)P.
(1)依題意補(bǔ)全圖形;
(2)連接DC′,判斷△DAC′的形狀并證明;
(3)連接PC,用等式表示線段PA,PC,PD之間的數(shù)量關(guān)系,并證明.
【考點(diǎn)】四邊形綜合題.
【答案】(1)圖形見解答;
(2)△DAC′是等腰三角形,理由見解答;
(3)PA+PC=PD,理由見解答.
(2)△DAC′是等腰三角形,理由見解答;
(3)PA+PC=
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:68引用:1難度:0.1
相似題
-
1.小明學(xué)習(xí)了特殊的四邊形后,對(duì)特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)另外一類特殊四邊形,如圖1,我們把兩條對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是 .
(2)性質(zhì)探究:通過探究,直接寫出垂美四邊形ABCD的面積S與兩條對(duì)角線AC、BD之間的數(shù)量關(guān)系:.
(3)問題解決:如圖2,分別以Rt△ABC的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BG、CE交于點(diǎn)N,CE交AB于點(diǎn)M,連結(jié)GE.
①求證:四邊形BCGE為垂美四邊形;
②已知AC=4,AB=5,則四邊形BCGE的面積為 .發(fā)布:2025/6/8 20:0:1組卷:277引用:4難度:0.4 -
2.如圖,菱形ABCD中,AB=6cm,∠ADC=60°,點(diǎn)E從點(diǎn)D出發(fā),以1cm/s的速度沿射線DA運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)A出發(fā),以1cm/s的速度沿射線AB運(yùn)動(dòng),連接CE、CF和EF,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t=3s時(shí),連接AC與EF交于點(diǎn)G,如圖①所示,則EF=cm;
(2)當(dāng)E、F分別在線段AD和AB上時(shí),如圖②所示,
①求證:△CEF是等邊三角形;
②連接BD交CE于點(diǎn)G,若BG=BC,求EF的長(zhǎng)和此時(shí)的t值.
(3)當(dāng)E、F分別運(yùn)動(dòng)到DA和AB的延長(zhǎng)線上時(shí),如圖③所示,若EF=3cm,直接寫出此時(shí)t的值.6發(fā)布:2025/6/8 20:30:2組卷:307引用:7難度:0.2 -
3.在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①如圖1,當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),線段CF、BD之間的位置關(guān)系為 ;數(shù)量關(guān)系為 .
②如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),①中的結(jié)論是否仍然成立,并說(shuō)明理由.
(2)如圖3,如果AB<AC,∠BAC<90°,點(diǎn)D在線段BC上運(yùn)動(dòng)(與點(diǎn)B不重合).
試探究:當(dāng)∠ACB=45°時(shí),(1)中的CF,BD之間的位置關(guān)系是否仍然成立,并說(shuō)明理由.發(fā)布:2025/6/8 20:30:2組卷:161引用:3難度:0.3