已知拋物線y=x2-4x+3與x軸交于點A,B(點A在點B的左邊),與y軸交于點C,頂點為D.

(1)直接寫出點B,C,D的坐標(biāo);
(2)如圖1,若平行于x軸的直線EF與拋物線交于點E,F(xiàn)(點E在點F的左邊),與線段CD交于點M.設(shè)點E的橫坐標(biāo)為t,線段EM的長為m,試求m關(guān)于t的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍),并求EM的最大值;
(3)如圖2,若點P是在y軸右側(cè)拋物線上的一動點,過點P作PN∥y軸交線段BC于點N,連接PB,是否存在這樣的點P,使△PBN是等腰三角形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)B(3,0),C(0,3),D(2,-1);
(2),;
(3)存在,(1,0),(2,-1),.
(2)
m
=
-
1
2
t
2
+
t
1
2
(3)存在,(1,0),(2,-1),
(
2
,
5
-
4
2
)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:186引用:3難度:0.1
相似題
-
1.對于二次函數(shù)給出如下定義:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)的圖象頂點為P(不與坐標(biāo)原點重合),以O(shè)P為邊構(gòu)造正方形OPMN,則稱正方形OPMN為二次函數(shù)y=ax2+bx+c的關(guān)聯(lián)正方形,稱二次函數(shù)y=ax2+bx+c為正方形OPMN的關(guān)聯(lián)二次函數(shù).若關(guān)聯(lián)正方形的頂點落在二次函數(shù)圖象上,則稱此點為伴隨點.
(1)如圖,直接寫出二次函數(shù)y=(x+1)2-2的關(guān)聯(lián)正方形OPMN頂點N的坐標(biāo),并驗證點N是否為伴隨點(填“是“或“否“):
(2)當(dāng)二次函數(shù)y=-x2+4x+c的關(guān)聯(lián)正方形OPMN的頂點P與N位于x軸的兩側(cè)時,請解答下列問題:
①若關(guān)聯(lián)正方形OPMN的頂點M、N在x軸的異側(cè)時,求c的取值范圍:
②當(dāng)關(guān)聯(lián)正方形OPMN的頂點M是伴隨點時,求關(guān)聯(lián)函數(shù)y=-x2+4x+c的解析式;
③關(guān)聯(lián)正方形OPMN被二次函數(shù)y=-x2+4x+c圖象的對稱軸分成的兩部分的面積分別為S1與S2,若S1≤S2,請直接寫出c的取值范圍.13發(fā)布:2025/5/23 11:30:2組卷:878引用:2難度:0.1 -
2.如圖,拋物線y=ax2+bx+2與x軸交于A,B兩點,且OA=2OB,與y軸交于點C,連接BC,拋物線對稱軸為直線x=
,D為第一象限內(nèi)拋物線上一動點,過點D作DE⊥OA于點E,與AC交于點F,設(shè)點D的橫坐標(biāo)為m.12
(1)求拋物線的表達(dá)式;
(2)當(dāng)線段DF的長度最大時,求D點的坐標(biāo);
(3)拋物線上是否存在點D,使得以點O,D,E為頂點的三角形與△BOC相似?若存在,求出m的值;若不存在,請說明理由.發(fā)布:2025/5/23 11:30:2組卷:4850引用:18難度:0.4 -
3.如圖,拋物線y=ax2+bx+2交y軸于點C,交x軸于A(-1,0),B(4,0)兩點,作直線BC.
(1)求拋物線的函數(shù)表達(dá)式;
(2)在拋物線的對稱軸上找一點P,使PC+PA的值最小,求點P的坐標(biāo);
(3)M是x軸上的動點,將點M向上平移3個單位長度得到點N,若線段MN與拋物線和直線BC都存在交點,請直接寫出點M的橫坐標(biāo)xM的取值范圍.發(fā)布:2025/5/23 11:30:2組卷:366引用:6難度:0.4
相關(guān)試卷