當(dāng)前位置:
2022-2023學(xué)年福建省泉州市晉江二中、鵬峰中學(xué)、廣海中學(xué)、泉港五中高三(上)聯(lián)考數(shù)學(xué)試卷(12月份)>
試題詳情
在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=5.
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點,3EM=EC,求二面角M-BD-E的平面角的余弦值.
5
EM
EC
【考點】二面角的平面角及求法;平面與平面垂直.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3
相似題
-
1.如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
CD,M是線段AE上的動點.12
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.發(fā)布:2025/1/2 8:0:1組卷:49引用:4難度:0.1 -
2.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
(1)若E,F(xiàn)分別為A1C,BC1的中點,求證:EF⊥平面AB1C1;
(2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值,求二面角A1-AC1-D的余弦值.55發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4 -
3.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點.12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大?。?/h2>發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6
把好題分享給你的好友吧~~