對于平面直角坐標系xOy中第一象限內(nèi)的點P(x,y)和圖形W,給出如下定義:
過點P作x軸和y軸的垂線,垂足分別為M,N,若圖形W中的任意一點Q(a,b)滿足a≤x且b≤y,則稱四邊形PMON是圖形W的一個覆蓋,點P為這個覆蓋的一個特征點.例:已知A(1,2),B(3,1),則點P(5,4)為線段AB的一個覆蓋的特征點.
(1)已知點C(2,3),
①在P1(1,3),P2(3,3),P3(4,4)中,是△ABC的覆蓋特征點的為P2,P3P2,P3;
②若在一次函數(shù)y=mx+5(m≠0)的圖象上存在△ABC的覆蓋的特征點,求m的取值范圍.
(2)以點D(2,4)為圓心,半徑為1作圓,在拋物線y=ax2-5ax+4(a≠0)上存在⊙D的覆蓋的特征點,直接寫出a的取值范圍a>0或a≤-16a>0或a≤-16.
a
≤
-
1
6
a
≤
-
1
6
【考點】二次函數(shù)綜合題.
【答案】P2,P3;a>0或
a
≤
-
1
6
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/20 14:0:8組卷:782引用:10難度:0.1
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3611引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2653引用:7難度:0.7
把好題分享給你的好友吧~~