現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.如圖1,若點O與點A重合,容易得到線段OM與ON的關(guān)系,
(1)觀察猜想:如圖2,若點O在正方形的中心(即兩條對角線的交點),OM與ON的數(shù)量關(guān)系是OM=ONOM=ON;
(2)探究證明;如圖3,若點O在正方形的內(nèi)部(含邊界),且OM=ON,請判斷三角板移動過程中所有滿足條件的點O可組成什么圖形,并說明理由;
(3)拓展延伸:若點O在正方形的外部,且OM=ON,請你在圖4中畫出滿足條件的一種情況,并就“三角板在各種情況下(含外部)移動,所有滿足條件的點O所組成的圖形”,寫出正確的結(jié)論(不必說明理由).
【考點】四邊形綜合題.
【答案】OM=ON
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:442引用:5難度:0.1
相似題
-
1.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點E、M,另一邊分別與射線DB、射線DC交于點F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長交射線AB于點K,求線段BK的長.14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9 -
2.如圖①,矩形ABCD中,AB=12,AD=25,延長CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點E落在BC上的點F處,連接DF.△ABE從點B出發(fā),沿線段BC以每秒3個單位的速度平移得到△A′B′E′,當點E′到達點F時,△ABE又從點F開始沿射線FD方向以每秒5個單位的速度平移,當點E′到達點D時停止運動,設(shè)運動的時間為t秒.
(1)線段DF的長度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請直接寫出面積S與運動時
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當點E′到達點F時,△ABE從點F開始沿射線FD方向以每秒5個單位的速度平移時,設(shè)A′B′
交射線FD于點M,交線段AD于點N,是否存在某一時刻t,使得△DMN為等腰三角形?若存在,請求出相應(yīng)的t值;若不存在,請說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
3.在矩形ABCD中,點E在BC上,以AE為邊作?AEFG,使點D在AE的對邊FG上.
(1)填空:如圖1,連接DE,則△ADE的面積=
并直接寫出?AEFG的面積S1與矩形ABCD的面積S2的數(shù)量關(guān)系;
(2)如圖2,EF與CD交于點P,連接PA.
①若∠F=90°,證明:A、E、P、D四點在同一個圓上;并直接說明點D、F、C、E是否在同一個圓上;
(3)如圖3,在①的條件下,若AB<BC,AG=AE,且D是FG的中點,EF交CD于點P,試判斷以FG為直徑的圓與直線PA的位置關(guān)系,并說明理由.發(fā)布:2025/1/13 8:0:2組卷:63引用:1難度:0.1
把好題分享給你的好友吧~~