綜合與探究:
如圖,直線l1:y=34x與直線l2交于點(diǎn)A(4,m),直線l2與x軸交于點(diǎn)B(8,0),點(diǎn)C從點(diǎn)O出發(fā)沿OB向終點(diǎn)B運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)點(diǎn)D從點(diǎn)B出發(fā)以同樣的速度沿BO向終點(diǎn)O運(yùn)動(dòng),作CM⊥x軸,交折線OA-AB于點(diǎn)M,作DN⊥x軸,交折線BA-AO于點(diǎn)N,設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)求直線l2的表達(dá)式;
(2)在點(diǎn)C,點(diǎn)D運(yùn)動(dòng)過(guò)程中.
①當(dāng)點(diǎn)M,N分別在OA,AB上時(shí),求證四邊形CMND是矩形.
②在點(diǎn)C,點(diǎn)D的整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)四邊形CMND是正方形時(shí),請(qǐng)你直接寫(xiě)出t的值.
(3)點(diǎn)P是平面內(nèi)一點(diǎn),在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,問(wèn)是否存在以點(diǎn)P,O,A,C為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
3
4
【考點(diǎn)】一次函數(shù)綜合題.
【答案】(1)直線l2的表達(dá)式為:y=-x+6;(2)①證明過(guò)程見(jiàn)解答部分;
②t的值為或;
(3)存在,點(diǎn)P的坐標(biāo)為(9,3)或(4,-3)或(,3).
3
4
②t的值為
32
11
56
11
(3)存在,點(diǎn)P的坐標(biāo)為(9,3)或(4,-3)或(
7
8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:1045引用:8難度:0.2
相似題
-
1.如圖,A(1,0),B(4,0),M(5,3).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向右移動(dòng),且過(guò)點(diǎn)P的直線l:y=-x+b也隨之移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求l的解析式;
(2)若l與線段BM有公共點(diǎn),確定t的取值范圍;
(3)直接寫(xiě)出t為何值時(shí),點(diǎn)M關(guān)于l的對(duì)稱(chēng)點(diǎn)落在y軸上.發(fā)布:2025/5/23 12:0:2組卷:1290引用:52難度:0.5 -
2.如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸交于點(diǎn)B(-5,0),與y軸交于點(diǎn)A,直線
過(guò)點(diǎn)A,與x軸交于點(diǎn)C,點(diǎn)P是x軸上方一個(gè)動(dòng)點(diǎn).y=-43x+4
(1)求直線AB的函數(shù)表達(dá)式;
(2)若點(diǎn)P在線段AB上,且S△APC=S△AOB,求點(diǎn)P的坐標(biāo);
(3)當(dāng) S△PBC=S△ABC時(shí),動(dòng)點(diǎn)M從點(diǎn)B出發(fā),先運(yùn)動(dòng)到點(diǎn)P,再?gòu)狞c(diǎn)P運(yùn)動(dòng)到點(diǎn)C后停止運(yùn)動(dòng).點(diǎn)M的運(yùn)動(dòng)速度始終為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)的總時(shí)間為t(秒),請(qǐng)直接寫(xiě)出t的最小值.發(fā)布:2025/5/22 18:30:2組卷:670引用:1難度:0.3 -
3.如圖,直線y=-
x-6與x軸交于點(diǎn)A,點(diǎn)B(-6,m)也在該直線上,點(diǎn)B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,直線BC交x軸于點(diǎn)D,點(diǎn)E坐標(biāo)為(0,12).112
(1)m的值為 ,點(diǎn)C的坐標(biāo)為 ;
(2)求直線AC的函數(shù)表達(dá)式;
(3)晶晶有個(gè)想法:“設(shè)S=S△ABD+S四邊形DCEO.由點(diǎn)B與點(diǎn)C關(guān)于x軸對(duì)稱(chēng)易得S△ABD=S△ACD,而△ACD與四邊形DCEO拼接后可看成△AOE,這樣求S便轉(zhuǎn)化為直接求△AOE的面積.”但經(jīng)反復(fù)演算,發(fā)現(xiàn)S△AOE≠S,請(qǐng)通過(guò)計(jì)算解釋她的想法錯(cuò)在哪里?發(fā)布:2025/5/23 2:30:1組卷:268引用:4難度:0.5