如圖①,梯形ABCD中,AD∥BC,AB=3,BC=1,CD=2,BE⊥AD,且BE=1,將梯形沿BE折疊得到圖②,使平面ABE⊥平面BCDE,CE與BD相交于O,點(diǎn)P在A(yíng)B上,且AP=2PB,R是CD的中點(diǎn),過(guò)O,P,R三點(diǎn)的平面交AC于Q.
(1)證明:Q是AC的中點(diǎn);
(2)如圖③,連結(jié)EQ,BQ,證明:AD⊥平面BEQ;
(3)如圖④,M是AB上一點(diǎn),已知二面角M-EC-B為45°,求AMAB的值.
3
2
AM
AB
【考點(diǎn)】二面角的平面角及求法;直線(xiàn)與平面垂直.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:25引用:1難度:0.6
相似題
-
1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
.5
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線(xiàn)段EC上一點(diǎn),3=EM,求二面角M-BD-E的平面角的余弦值.EC發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3 -
2.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點(diǎn).12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大?。?/h2>發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6 -
3.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長(zhǎng)為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
(1)若E,F(xiàn)分別為A1C,BC1的中點(diǎn),求證:EF⊥平面AB1C1;
(2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值,求二面角A1-AC1-D的余弦值.55發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4
把好題分享給你的好友吧~~