教科書(shū)中這樣寫(xiě)道:“我們把多項(xiàng)式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問(wèn)題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問(wèn)題或求代數(shù)式最大值,最小值等.例如:分解因式.
原式=x2+2x-3=(x2+2x+1)-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1);
例如:求代數(shù)式2x2+4x-6的最小值.
原式=2x2+4x-6=2(x2+2x-3)=2(x+1)2-8.可知當(dāng)x=-1時(shí),2x2+4x-6有最小值,最小值是-8.
(1)配方法分解因式:m2-10m+16;
(2)已知a、b、c是△ABC的三條邊長(zhǎng).若a、b、c滿足a2+14b2+5=4a+b-|c-2|,試判斷△ABC的形狀,并說(shuō)明你的理由;
(3)當(dāng)m,n為何值時(shí),多項(xiàng)式m2-2mn+2n2-4m-4n+25有最小值,并求出這個(gè)最小值.
a
2
+
1
4
b
2
+
5
=
4
a
+
b
-
|
c
-
2
|
【答案】(1)(m-2)(m-8);
(2)△ABC是等邊三角形,理由見(jiàn)解析;
(3)當(dāng)m=6,n=4時(shí),多項(xiàng)式最小值為5.
(2)△ABC是等邊三角形,理由見(jiàn)解析;
(3)當(dāng)m=6,n=4時(shí),多項(xiàng)式最小值為5.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/5 15:0:8組卷:156引用:2難度:0.6