各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足2(Sn+1)=an2+an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2bn(n∈N*),數(shù)列{cn}滿足cn=an,n=2k-1 bn,n=2k
(k∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求Tn;
(3)若數(shù)列Pn=n24+24n(n∈N*),甲同學(xué)利用第(2)問(wèn)中的Tn,試圖確定T2k-P2k(k∈N*)的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無(wú)法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請(qǐng)說(shuō)明理由.
c
n
=
a n , n = 2 k - 1 |
b n , n = 2 k |
(
k
∈
N
*
)
P
n
=
n
2
4
+
24
n
(
n
∈
N
*
)
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:15引用:3難度:0.5
相似題
-
1.已知數(shù)列{an}滿足a1=1,且
an+1=an(n∈N*).記bn=anan+1,Tn為數(shù)列{bn}的前n項(xiàng)和,則使Tn>2成立的最小正整數(shù)n為( ?。?/h2>31232A.5 B.6 C.7 D.8 發(fā)布:2024/12/23 22:30:3組卷:106引用:1難度:0.5 -
2.數(shù)列{an}滿足a1=
,an+1=2an,數(shù)列12的前n項(xiàng)積為T(mén)n,則T5=( ?。?/h2>{1an}A. 18B. 116C. 132D. 164發(fā)布:2024/12/18 2:30:2組卷:107引用:3難度:0.7 -
3.已知an=
,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S2021=( ?。?/h2>1n∑i=1iA. 20202021B. 20212022C. 40402021D. 20211011發(fā)布:2024/12/28 1:30:3組卷:67引用:1難度:0.7
把好題分享給你的好友吧~~