如圖1,在平面直角坐標(biāo)系中,拋物線y=-13x2+233x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.
(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當(dāng)△PCD的面積最大時,Q從點P出發(fā),先沿適當(dāng)?shù)穆窂竭\動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y(tǒng)軸上的點N處,最后沿適當(dāng)?shù)穆窂竭\動到點A處停止.當(dāng)點Q的運動路徑最短時,求點N的坐標(biāo)及點Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應(yīng)點為點E′,點A的對應(yīng)點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應(yīng)點分別為點A1,C1,且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標(biāo);若不能,請說明理由.

1
3
2
3
3
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2855引用:2難度:0.1
相似題
-
1.已知:拋物線C1:y=-(x+m)2+m2(m>0),拋物線C2:y=(x-n)2+n2(n>0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1:y=-(x+1)2+1與拋物線C2:y=(x-
)2+2是派對拋物線,已知派對拋物線C1,C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2于C,拋物線C2的對稱軸交拋物線C1與D.2
(1)已知拋物線①y=-x2-2x,②y=(x-3)2+3,③y=(x-)2+2,④y=x2-x+2,則拋物線①②③④中互為派對拋物線的是(請在橫線上填寫拋物線的數(shù)字序號);12
(2)如圖1,當(dāng)m=1,n=2時,證明AC=BD;
(3)如圖2,連接AB,CD交于點F,延長BA交x軸的負(fù)半軸于點E,記BD交x軸于G,CD交x軸于點H,∠BEO=∠BDC.
①求證:四邊形ACBD是菱形;
②若已知拋物線C2:y=(x-2)2+4,請求出m的值.發(fā)布:2025/5/23 9:0:2組卷:765引用:6難度:0.3 -
2.如圖,拋物線
與x軸相交于點A(4,0),與y軸相交于點B(0,2).y=-14x2+bx+c
(1)求拋物線的表達式.
(2)D為線段AB上一點(不與點A,B重合),過點D作DE⊥x軸于點E,交拋物線于點F,若DE=DF,求點D的坐標(biāo).
(3)P是第四象限內(nèi)拋物線上一點,已知∠PBA=∠BAO,則點P的坐標(biāo)為 .發(fā)布:2025/5/23 9:0:2組卷:398引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+bx+c的圖象與x軸交于A(-2,0)、B(5,0)兩點,過點C(2,4).動點D從點A出發(fā),以每秒1個單位長度的速度沿AB方向運動,設(shè)運動的時間為t秒.
(1)求拋物線y=ax2+bx+c的表達式;
(2)過D作DE⊥AB交AC于點E,連接BE.當(dāng)t=3時,求△BCE的面積;
(3)如圖2,點F(4,2)在拋物線上.當(dāng)t=5時,連接AF,CF,CD,在拋物線上是否存在點P,使得∠ACP=∠DCF?若存在,直接寫出此時直線CP與x軸的交點Q的坐標(biāo),若不存在,請簡要說明理由.?
發(fā)布:2025/5/23 9:0:2組卷:299引用:3難度:0.4