如圖所示,AB∥CD,點(diǎn)E,F(xiàn)分別在直線(xiàn)CD,AB上,∠BEC=2∠BEF,過(guò)點(diǎn)A作AG⊥BE的延長(zhǎng)線(xiàn)交于點(diǎn)G,交CD于點(diǎn)N,AK平分∠BAG,交EF于點(diǎn)H,交BE于點(diǎn)M.
(1)直接寫(xiě)出∠AHE,∠FAH,∠KEH之間的關(guān)系:∠AHE=∠FAH+∠KEH∠AHE=∠FAH+∠KEH.
(2)若∠BEF=12∠BAK,求∠AHE.
(3)在(2)的條件下,將△KHE繞著點(diǎn)E以每秒3°的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為t,當(dāng)KE邊與射線(xiàn)ED重合時(shí)停止,則在旋轉(zhuǎn)過(guò)程中,當(dāng)△KHE的其中一邊與△ENG的某一邊平行時(shí),求此時(shí)t的值.
∠
BEF
=
1
2
∠
BAK
【考點(diǎn)】平行線(xiàn)的性質(zhì).
【答案】∠AHE=∠FAH+∠KEH
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:346引用:3難度:0.5
相似題
-
1.已知AB∥CD,點(diǎn)M、N分別是AB、CD上的點(diǎn),點(diǎn)G在A(yíng)B、CD之間,連接MG、NG.請(qǐng)利用所學(xué)知識(shí)解決問(wèn)題:
(1)探究證明:如圖1,試探究∠MGN與∠AMG、∠CNG之間有什么數(shù)量關(guān)系,并說(shuō)明理由.
(2)拓展應(yīng)用:如圖2,若∠AMG與∠CNG的平分線(xiàn)相交于點(diǎn)P,請(qǐng)直接寫(xiě)出∠MGN與∠MPN之間的數(shù)量關(guān)系.
(3)遷移提升:如圖3,若點(diǎn)P是CD下方一點(diǎn),MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,請(qǐng)直接寫(xiě)出∠MGN+∠MPN的度數(shù).發(fā)布:2024/12/23 20:0:2組卷:840引用:2難度:0.5 -
2.將一塊三角板ABC(∠ACB=90°,∠A=30°)按如圖①所示放置在銳角∠POQ=α內(nèi),使直角邊BC落在OQ邊上.現(xiàn)將三角板ABC繞點(diǎn)B逆時(shí)針以每秒m°的速度旋轉(zhuǎn)t秒(直角邊BC旋轉(zhuǎn)到如圖②所示的位置),過(guò)點(diǎn)A作MN∥OQ交射線(xiàn)OP于點(diǎn)M,AD平分∠MAB,其中m的值滿(mǎn)足:使代數(shù)式|m-10|+3取得最小值.
(1)求m的值;
(2)當(dāng)t=4秒時(shí),求∠NAC的度數(shù);
(3)在某一時(shí)刻,當(dāng)BC∥OP時(shí),試求出∠ADO與α之間的數(shù)量關(guān)系.發(fā)布:2024/12/23 20:0:2組卷:816引用:3難度:0.5 -
3.如圖,l1∥l2,則( ?。?/h2>
發(fā)布:2024/12/23 20:0:2組卷:798引用:5難度:0.6
把好題分享給你的好友吧~~