對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學(xué)等式.
例如,由圖1可以得到:(a+2b)(a+b)=a2+3ab+2b2.
利用圖2所得的等式解答下列問題:
(1)若實數(shù)a,b,c滿足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(2)若實數(shù)x,y,z滿足2x×4y÷8z=4,x2+4y2+9z2=44,求2xy-3xz-6yz的值.

【答案】(1)45;(2)-20.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/16 2:0:2組卷:326引用:4難度:0.4
相似題
-
1.若一個四位正整數(shù)
滿足:a+c=b+d,我們就稱該數(shù)是“交替數(shù)”,則最小的“交替數(shù)”是 ;若一個“交替數(shù)”m滿足千位數(shù)字與百位數(shù)字的平方差是15,且十位數(shù)字與個位數(shù)的和能被5整除.則滿足條件的“交替數(shù)”m的最大值為 .abcd發(fā)布:2025/6/10 6:0:2組卷:1678引用:14難度:0.3 -
2.已知a、b、c為△ABC的三邊長,且滿足a2c2+b2c2=a4-b4,則△ABC的形狀是 .
發(fā)布:2025/6/10 6:0:2組卷:365引用:2難度:0.6 -
3.若一個四位數(shù)M的個位數(shù)字、十位數(shù)字、百位數(shù)字之和為12,則稱這個四位數(shù)M為“永恒數(shù)”.將“永恒數(shù)”M的千位數(shù)字與百位數(shù)字交換順序,十位數(shù)字與個位數(shù)字交換順序得到一個新的四位數(shù)N,并規(guī)定
.若一個“永恒數(shù)”M的百位數(shù)字與個位數(shù)字之差恰為千位數(shù)字,且F(M)=M-N9為整數(shù),則F(M)的最大值為 .F(M)9發(fā)布:2025/6/10 11:0:1組卷:465引用:8難度:0.6